Identification of Root Rot Resistance QTLs in Pea Using Fusarium solani f. sp. pisi-Responsive Differentially Expressed Genes.

Publication Overview
TitleIdentification of Root Rot Resistance QTLs in Pea Using Fusarium solani f. sp. pisi-Responsive Differentially Expressed Genes.
AuthorsWilliamson-Benavides BA, Sharpe RM, Nelson G, Bodah ET, Porter LD, Dhingra A
TypeJournal Article
Journal NameFrontiers in genetics
Volume12
Year2021
Page(s)629267
CitationWilliamson-Benavides BA, Sharpe RM, Nelson G, Bodah ET, Porter LD, Dhingra A. Identification of Root Rot Resistance QTLs in Pea Using Fusarium solani f. sp. pisi-Responsive Differentially Expressed Genes.. Frontiers in genetics. 2021; 12:629267.

Abstract

Pisum sativum (pea) yields in the United States have declined significantly over the last decades, predominantly due to susceptibility to root rot diseases. One of the main causal agents of root rot is the fungus Fusarium solani f. sp. pisi (Fsp), leading to yield losses ranging from 15 to 60%. Determining and subsequently incorporating the genetic basis for resistance in new cultivars offers one of the best solutions to control this pathogen; however, no green-seeded pea cultivars with complete resistance to Fsp have been identified. To date, only partial levels of resistance to Fsp has been identified among pea genotypes. SNPs mined from Fsp-responsive differentially expressed genes (DEGs) identified in a preceding study were utilized to identify QTLs associated with Fsp resistance using composite interval mapping in two recombinant inbred line (RIL) populations segregating for partial root rot resistance. A total of 769 DEGs with single nucleotide polymorphisms (SNPs) were identified, and the putative SNPs were evaluated for being polymorphic across four partially resistant and four susceptible P. sativum genotypes. The SNPs with validated polymorphisms were used to screen two RIL populations using two phenotypic criteria: root disease severity and plant height. One QTL, WB.Fsp-Ps 5.1 that mapped to chromosome 5 explained 14.8% of the variance with a confidence interval of 10.4 cM. The other four QTLs located on chromosomes 2, 3, and 5, explained 5.3-8.1% of the variance. The use of SNPs derived from Fsp-responsive DEGs for QTL mapping proved to be an efficient way to identify molecular markers associated with Fsp resistance in pea. These QTLs are potential candidates for marker-assisted selection and gene pyramiding to obtain high levels of partial resistance in pea cultivars to combat root rot caused by Fsp.

Features
This publication contains information about 752 features:
Feature NameUniquenameType
WSU21_130WSU21_130genetic_marker
WSU21_131WSU21_131genetic_marker
WSU21_159WSU21_159genetic_marker
WSU21_351WSU21_351genetic_marker
WSU21_396WSU21_396genetic_marker
WSU21_455WSU21_455genetic_marker
WSU21_541WSU21_541genetic_marker
WSU21_563WSU21_563genetic_marker
WSU21_655WSU21_655genetic_marker
WSU21_681WSU21_681genetic_marker
WSU21_1004WSU21_1004genetic_marker
WSU21_1006WSU21_1006genetic_marker
WSU21_1022WSU21_1022genetic_marker
WSU21_1115WSU21_1115genetic_marker
WSU21_1232WSU21_1232genetic_marker
WSU21_1234WSU21_1234genetic_marker
WSU21_1292WSU21_1292genetic_marker
WSU21_1327WSU21_1327genetic_marker
WSU21_1414WSU21_1414genetic_marker
WSU21_1454WSU21_1454genetic_marker
WSU21_1456WSU21_1456genetic_marker
WSU21_1475WSU21_1475genetic_marker
WSU21_1541WSU21_1541genetic_marker
WSU21_1634WSU21_1634genetic_marker
WSU21_1636WSU21_1636genetic_marker

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication ModelElectronic-eCollection
ISSN1664-8021
pISSN1664-8021
Publication Date2021
Journal AbbreviationFront Genet
DOI10.3389/fgene.2021.629267
Elocation10.3389/fgene.2021.629267
CopyrightCopyright © 2021 Williamson-Benavides, Sharpe, Nelson, Bodah, Porter and Dhingra.
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountrySwitzerland