EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance

Publication Overview
TitleEST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance
AuthorsKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M
TypeJournal Article
Journal NameTheoretical and applied genetics
Volume127
Issue3
Year2014
Page(s)703-713
CitationKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theoretical and applied genetics. 2014; 127(3):703-713.

Abstract

KEY MESSAGE : Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic ‘orphan’ crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab� ×� ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2� years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.
Features
This publication contains information about 770 features:
Feature NameUniquenameType
SNP_20002370SNP_20002370genetic_marker
SNP_20002371SNP_20002371genetic_marker
SNP_20002373SNP_20002373genetic_marker
SNP_20002376SNP_20002376genetic_marker
SNP_20002377SNP_20002377genetic_marker
SNP_20002386SNP_20002386genetic_marker
SNP_20002390SNP_20002390genetic_marker
SNP_20002391SNP_20002391genetic_marker
SNP_20002392SNP_20002392genetic_marker
SNP_20002395SNP_20002395genetic_marker
SNP_20002400SNP_20002400genetic_marker
SNP_20002403SNP_20002403genetic_marker
SNP_20002407SNP_20002407genetic_marker
SNP_20002410SNP_20002410genetic_marker
SNP_20002425SNP_20002425genetic_marker
SNP_20002427SNP_20002427genetic_marker
SNP_20002438SNP_20002438genetic_marker
SNP_20002439SNP_20002439genetic_marker
SNP_20002444SNP_20002444genetic_marker
SNP_20002445SNP_20002445genetic_marker
SNP_20002446SNP_20002446genetic_marker
SNP_20002453SNP_20002453genetic_marker
SNP_20002459SNP_20002459genetic_marker
SNP_20002464SNP_20002464genetic_marker
SNP_20002465SNP_20002465genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Lentil-Boron_tolerance-Kaur-2014
Featuremaps
This publication contains information about 1 maps:
Map Name
lentil-CassabxILL2024-F6
Stocks
This publication contains information about 2 stocks:
Stock NameUniquenameType
CassabCassabaccession
ILL2024ILL2024accession
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2014
Published Location|||
Language Abbreng
Publication Model[electronic resource].
URLhttp://dx.doi.org/10.1007/s00122-013-2252-0
KeywordsArabidopsis thaliana, Glycine max, Lens culinaris, Lotus corniculatus var. japonicus, Medicago truncatula, boron, chromosome mapping, databases, expressed sequence tags, foods, genes, marker-assisted selection, microsatellite repeats, quantitative trait loci, single nucleotide polymorphism, soybeans, toxicity