EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance

Publication Overview
TitleEST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance
AuthorsKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M
TypeJournal Article
Journal NameTheoretical and applied genetics
Volume127
Issue3
Year2014
Page(s)703-713
CitationKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theoretical and applied genetics. 2014; 127(3):703-713.

Abstract

KEY MESSAGE : Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic ‘orphan’ crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab� ×� ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2� years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.
Features
This publication contains information about 770 features:
Feature NameUniquenameType
SNP_20002815SNP_20002815genetic_marker
SNP_20002829SNP_20002829genetic_marker
SNP_20002830SNP_20002830genetic_marker
SNP_20002834SNP_20002834genetic_marker
SNP_20002841SNP_20002841genetic_marker
SNP_20002842SNP_20002842genetic_marker
SNP_20002851SNP_20002851genetic_marker
SNP_20002854SNP_20002854genetic_marker
SNP_20002855SNP_20002855genetic_marker
SNP_20002857SNP_20002857genetic_marker
SNP_20002858SNP_20002858genetic_marker
SNP_20002859SNP_20002859genetic_marker
SNP_20002873SNP_20002873genetic_marker
SNP_20002874SNP_20002874genetic_marker
SNP_20002877SNP_20002877genetic_marker
SNP_20002892SNP_20002892genetic_marker
SNP_20002895SNP_20002895genetic_marker
SNP_20002898SNP_20002898genetic_marker
SNP_20002904SNP_20002904genetic_marker
SNP_20002905SNP_20002905genetic_marker
SNP_20002953SNP_20002953genetic_marker
SNP_20002955SNP_20002955genetic_marker
SNP_20002969SNP_20002969genetic_marker
SNP_20002970SNP_20002970genetic_marker
SNP_20002971SNP_20002971genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Lentil-Boron_tolerance-Kaur-2014
Featuremaps
This publication contains information about 1 maps:
Map Name
lentil-CassabxILL2024-F6
Stocks
This publication contains information about 2 stocks:
Stock NameUniquenameType
CassabCassabaccession
ILL2024ILL2024accession
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2014
Published Location|||
Language Abbreng
Publication Model[electronic resource].
URLhttp://dx.doi.org/10.1007/s00122-013-2252-0
KeywordsArabidopsis thaliana, Glycine max, Lens culinaris, Lotus corniculatus var. japonicus, Medicago truncatula, boron, chromosome mapping, databases, expressed sequence tags, foods, genes, marker-assisted selection, microsatellite repeats, quantitative trait loci, single nucleotide polymorphism, soybeans, toxicity