Quantitative Trait Loci for Cold Tolerance in Chickpea

Publication Overview
TitleQuantitative Trait Loci for Cold Tolerance in Chickpea
AuthorsMugabe D, Coyne CJ, Piaskowski J, Zheng P, Ma Y, Landry E, McGee R, Main D, Vandemark G, Zhang H, Abbo S
TypeJournal Article
Journal NameCrop Science
Issue59
Year2019
Page(s)573-582
CitationMugabe D, Coyne CJ, Piaskowski J, Zheng P, Ma Y, Landry E, McGee R, Main D, Vandemark G, Zhang H, Abbo S. Quantitative Trait Loci for Cold Tolerance in Chickpea. Crop Science. 2019; (59)573-582.

Abstract

Fall-sown chickpea (Cicer arietinum L.) yields are often double those of spring-sown chickpea in regions with Mediterranean climates that have mild winters. However, winter kill can limit the productivity of fall-sown chickpea. Developing cold-tolerant chickpea would allow the expansion of the current geographic range where chickpea is grown and also improve productivity. The objective of this study was to identify the quantitative trait loci (QTL) associated with cold tolerance in chickpea. An interspecific recombinant inbred line population of 129 lines derived from a cross between ICC 4958, a cold-sensitive desi type (C. arietinum), and PI 489777, a coldtolerant wild relative (C. reticulatum Ladiz), was used in this study. The population was phenotyped for cold tolerance in the field over four field seasons (September 2011–March 2015) and under controlled conditions two times. The population was genotyped using genotypingby- sequencing, and an interspecific genetic linkage map consisting of 747 single nucleotide polymorphism (SNP) markers, spanning a distance of 393.7 cM, was developed. Three significant QTL were found on linkage groups (LGs) 1B, 3, and 8. The QTL on LGs 3 and 8 were consistently detected in six environments with logarithm of odds score ranges of 5.16 to 15.11 and 5.68 to 23.96, respectively. The QTL CT Ca-3.1 explained 7.15 to 34.6% of the phenotypic variance in all environments, whereas QTL CT Ca-8.1 explained 11.5 to 48.4%. The QTLassociated SNP markers may become useful for breeding with further fine mapping for increasing cold tolerance in domestic chickpea.
Features
This publication contains information about 764 features:
Feature NameUniquenameType
6532_66532_6genetic_marker
6541_66541_6genetic_marker
6544_66544_6genetic_marker
6556_66556_6genetic_marker
6557_66557_6genetic_marker
6559_66559_6genetic_marker
6561_66561_6genetic_marker
6562_66562_6genetic_marker
659_1659_1genetic_marker
6597_66597_6genetic_marker
6601_66601_6genetic_marker
6619_66619_6genetic_marker
6623_66623_6genetic_marker
6628_66628_6genetic_marker
6632_66632_6genetic_marker
665_1665_1genetic_marker
6650_66650_6genetic_marker
6651_66651_6genetic_marker
6679_66679_6genetic_marker
6701_66701_6genetic_marker
6702_66702_6genetic_marker
6720_66720_6genetic_marker
6721_66721_6genetic_marker
6722_66722_6genetic_marker
676_1676_1genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Chickpea-Cold_tolerance-Mugabe-2019
Featuremaps
This publication contains information about 1 maps:
Map Name
Chickpea-ICC4958xPI489777-RIL-CRIL2
Stocks
This publication contains information about 1 stocks:
Stock NameUniquenameType
ICC4958_x_PI489777-RIL-F10ICC4958_x_PI489777-RIL-F10population
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/cs/abstracts/59/2/573?search-result=1