Remnants of the Legume Ancestral Genome Preserved in Gene-Rich Regions: Insights from Lupinus angustifolius Physical, Genetic, and Comparative Mapping

Publication Overview
TitleRemnants of the Legume Ancestral Genome Preserved in Gene-Rich Regions: Insights from Lupinus angustifolius Physical, Genetic, and Comparative Mapping
AuthorsKsiążkiewicz M, Zielezinski A, Wyrwa K, Szczepaniak A, Rychel S, Karlowski W, Wolko B, Naganowska B
TypeJournal Article
Journal NamePlant molecular biology reporter
Volume33
Year2015
Page(s)84-101
CitationKsiążkiewicz M, Zielezinski A, Wyrwa K, Szczepaniak A, Rychel S, Karlowski W, Wolko B, Naganowska B. Remnants of the Legume Ancestral Genome Preserved in Gene-Rich Regions: Insights from Lupinus angustifolius Physical, Genetic, and Comparative Mapping. Plant molecular biology reporter. 2015; 33:84-101.

Abstract

The narrow-leafed lupin (Lupinus angustifolius) was recently considered as a legume reference species. Genetic resources have been developed, including a draft genome sequence, linkage maps, nuclear DNA libraries, and cytogenetic chromosome-specific landmarks. Here, we used a complex approach, involving DNA fingerprinting, sequencing, genetic mapping, and molecular cytogenetics, to localize and analyze L. angustifolius gene-rich regions (GRRs). A L. angustifolius genomic bacterial artificial chromosome (BAC) library was screened with short sequence repeat (SSR)-based probes. Selected BACs were fingerprinted and assembled into contigs. BAC-end sequence (BES) annotation allowed us to choose clones for sequencing, targeting GRRs. Additionally, BESs were aligned to the scaffolds of the genome sequence. The genetic map was supplemented with 35 BES-derived markers, distributed in 14 linkage groups and tagging 37 scaffolds. The identified GRRs had an average gene density of 19.6 genes/100 kb and physical-to-genetic distance ratios of 11 to 109 kb/cM. Physical and genetic mapping was supported by multi-BAC-fluorescence in situ hybridization (FISH), and five new linkage groups were assigned to the chromosomes. Syntenic links to the genome sequences of five legume species (Medicago truncatula, Glycine max, Lotus japonicus, Phaseolus vulgaris, and Cajanus cajan) were identified. The comparative mapping of the two largest lupin GRRs provides novel evidence for ancient duplications in all of the studied species. These regions are conserved among representatives of the main clades of Papilionoideae. Furthermore, despite the complex evolution of legumes, some segments of the nuclear genome were not substantially modified and retained their quasi-ancestral structures. Cytogenetic markers anchored in these regions constitute a platform for heterologous mapping of legume genomes.
Features
This publication contains information about 306 features:
Feature NameUniquenameType
AB809336AB809336.1biological_region
AB809335AB809335.1biological_region
AB809334AB809334.1biological_region
AB809333AB809333.1biological_region
AB809332AB809332.1biological_region
AB809331AB809331.1biological_region
AB809330AB809330.1biological_region
AB809329AB809329.1biological_region
AB809328AB809328.1biological_region
AB809327AB809327.1biological_region
AB809326AB809326.1biological_region
AB809325AB809325.1biological_region
AB809324AB809324.1biological_region
AB809323AB809323.1biological_region
AB809322AB809322.1biological_region
AB809321AB809321.1biological_region
AB809320AB809320.1biological_region
AB809319AB809319.1biological_region
AB809318AB809318.1biological_region
AB809317AB809317.1biological_region
AB809316AB809316.1biological_region
AB809315AB809315.1biological_region
AB809314AB809314.1biological_region
AB809313AB809313.1biological_region
AB809312AB809312.1biological_region

Pages

Properties
Additional details for this publication include:
Property NameValue
ISSN0735-9640
Language Abbreng
Publication ModelPrint
LanguageEnglish
Journal CountryUnited States
Journal AbbreviationPlant Mol. Biol. Rep.
Publication Date2015
Publication TypeJournal Article
pISSN0735-9640