Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

Publication Overview
TitleTranscriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery
AuthorsKaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW
TypeJournal Article
Journal NameBMC genomics
Volume12
Year2011
Page(s)265
CitationKaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC genomics. 2011; 12:265.

Abstract

BACKGROUND
Lentil (Lens culinaris Medik.) is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality.

RESULTS
Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs). De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR)-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism.

CONCLUSIONS
A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.

Features
This publication contains information about 17,695 features:
Feature NameUniquenameType
JI846441JI846441.1region
JI846440JI846440.1region
JI846439JI846439.1region
JI846438JI846438.1region
JI846437JI846437.1region
JI846436JI846436.1region
JI846435JI846435.1region
JI846434JI846434.1region
JI846433JI846433.1region
JI846432JI846432.1region
JI846431JI846431.1region
JI846430JI846430.1region
JI846429JI846429.1region
JI846428JI846428.1region
JI846427JI846427.1region
JI846426JI846426.1region
JI846425JI846425.1region
JI846424JI846424.1region
JI846423JI846423.1region
JI846422JI846422.1region
JI846421JI846421.1region
JI846420JI846420.1region
JI846419JI846419.1region
JI846418JI846418.1region
JI846417JI846417.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Language Abbreng
Journal CountryEngland
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
Publication Date2011
Journal AbbreviationBMC Genomics
DOI10.1186/1471-2164-12-265
Elocation10.1186/1471-2164-12-265
LanguageEnglish
Publication TypeResearch Support, Non-U.S. Gov't