PCD and CSFL Citations

Peer-reviewed papers citing PCD or CSFL

2024 (11)

  1. Rawale, K. S., Gutierrez-Zamora, G. R., Venditto, N. A., & Gill, K. S. (2024). Identification of pathogen-specific novel sources of genetic resistance against ascochyta blight and their underlying genetic control. Plant Disease, (ja).
     
  2. Danakumara, T., Kumar, N., Patil, B. S., Kumar, T., Bharadwaj, C., Jain, P. K., ... & Varshney, R. K. (2024). Unraveling the genetics of heat tolerance in chickpea landraces (Cicer arietinum L.) using genome-wide association studies. Frontiers in plant science, 15, 1376381.
     
  3. Shekhawat, P. K., Singh, J., Jakhar, M. L., Punia, S. S., & Singh, V. Genome Wide Association Study in Pulses for Salt Tolerance: Status and Perspective. Journal of Soil Salinity and Water Quality, 15(2), 127-145.
     
  4. Parveen, K., Saddique, M. A. B., Waqas, M. U., Attia, K. A., Rizwan, M., Abushady, A. M., & Shamsi, I. H. (2024). Genome-wide analysis and expression divergence of protein disulfide isomerase (PDI) gene family members in chickpea (Cicer arietinum) under salt stress. Functional Plant Biology, 51(2).
     
  5. Parveen, K., Saddique, M. A. B., Ali, Z., Rehman, S. U., Khan, Z., Waqas, M., ... & Muneer, M. A. (2024). Genome-wide analysis of Glutathione peroxidase (GPX) gene family in Chickpea (Cicer arietinum L.) under salinity stress. Gene, 898, 148088.
    Cited By
  6. García-Fernández, C., Jurado, M., Campa, A., Bitocchi, E., Papa, R., & Ferreira, J. J. (2024). Genetic control of pod morphological traits and pod edibility in a common bean RIL population. Theoretical and Applied Genetics, 137(1), 6. 
     
  7. Reinprecht, Y., Schram, L., Perry, G. E., Morneau, E., Smith, T. H., & Pauls, K. P. (2024). Mapping yield and yield-related traits using diverse common bean germplasm. Frontiers in Genetics, 14, 1246904.
     
  8. Zanetta, C. U., Gali, K. K., Rafii, M. Y., Jaafar, J. N., Waluyo, B., Warkentin, T. D., & Ramlee, S. I. (2024). Dissecting genetic variation and association mapping for agro-morphological traits under high temperature stress in pea (Pisum sativum L.). Euphytica, 220(2), 1-22.
     
  9. Thakro, V., Varshney, N., Malik, N., Daware, A., Srivastava, R., Mohanty, J. K., ... & Parida, S. K. (2024). Functional allele of a MATE gene selected during domestication modulates seed color in chickpea. The Plant Journal, 117(1), 53-71.
     
  10. Rivero-Marcos, M., Lasa, B., Neves, T., Zamarreño, Á. M., García-Mina, J. M., García-Olaverri, C., ... & Ariz, I. (2024). Plant ammonium sensitivity is associated with the external pH adaptation, repertoire of nitrogen transporters, and nitrogen requirement. Journal of Experimental Botany, erae106.
     
  11. Singh, N., Ujinwal, M., & Singh, N. K. (2024). Ppomicsdb: A Multi‐Omics Database for Genetic and Molecular Breeding Applications in Pigeonpea. Legume Science, 6(2), e220.

 

2023 (7)

  1. Lakmes, A., Jhar, A., Brennan, A. C., & Kahriman, A. (2023). Inheritance of early and late Ascochyta blight resistance in wide crosses of chickpea. Genes, 14(2), 316.
    Cited By
  2. Das, P. P., Xu, C., Lu, Y., Khorsandi, A., Tanaka, T., Korber, D., ... & Rajagopalan, N. (2023). Snapshot of proteomic changes in Aspergillus oryzae during various stages of fermentative processing of pea protein isolate. Food Chemistry: Molecular Sciences, 6, 100169.
    Cited By
  3. Halladakeri, P., Gudi, S., Akhtar, S., Singh, G., Saini, D. K., Hilli, H. J., ... & Mir, R. R. (2023). Meta‐analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.). The Plant Genome, e20342.
    Cited By
  4. Bagheri, M., Santos, C. S., Rubiales, D., & Vasconcelos, M. W. (2023) Challenges in pea breeding for tolerance to drought: status and prospects. Annals of Applied Biology, 183(2):108-120.
    Cited By
  5. Imbert, B., Kreplak, J., Flores, R. G., Aubert, G., Burstin, J., & Tayeh, N. (2023). Development of a knowledge graph framework to ease and empower translational approaches in plant research: a use-case on grain legumes. Frontiers in Artificial Intelligence, 6.
  6. Rahman, M. M., Porter, L. D., Ma, Y., Coyne, C. J., Zheng, P., Chaves‐Cordoba, B., & Naidu, R. A. (2023). Resistance in pea (Pisum sativum) genetic resources to the pea aphid, Acyrthosiphon pisum. Entomologia Experimentalis et Applicata, 171(6), 435-448.
    Cited By
  7. Rajpal, V. R., Singh, A., Kathpalia, R., Thakur, R. K., Khan, M., Pandey, A., ... & Raina, S. N. (2023). The prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. Frontiers in Plant Science, 14, 1127239.
    Cited By

2022 (12)

  1. Abou-Khater, L., Maalouf, F., Jighly, A., Alsamman, A. M., Rubiales, D., Rispail, N., ... & Kumar, S. (2022). Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.) collectionScientific reports, 12(1), 1-13.
    Cited By
  2. Wu, L., Fredua-Agyeman, R., Strelkov, S. E., Chang, K. F., & Hwang, S. F. (2022). Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. International journal of molecular sciences, 23(17), 9744.
    Cited By
  3. Martins, L. B., Balint-Kurti, P., & Reberg-Horton, S. C. (2022). Genome-wide association study for morphological traits and resistance to Peryonella pinodes in the USDA pea single plant plus collection. G3, 12(9), jkac168.
    Cited By
  4. Derbyshire, M. C., Batley, J., & Edwards, D. (2022). Use of multiple ‘omics techniques to accelerate the breeding of abiotic stress tolerant crops. Current Plant Biology, 100262.
    Cited By
  5. Frailey, D. C., Zhang, Q., Wood, D. J., & Davis, T. M. (2022). Defining the mutation sites in chickpea nodulation mutants PM233 and PM405. BMC plant biology, 22(1), 1-12.
    Cited By
  6. Yadav, S., Yadava, Y. K., Kohli, D., Meena, S., Kalwan, G., Bharadwaj, C., ... & Jain, P. K. (2022). Genome-wide identification, in silico characterization and expression analysis of the RNA helicase gene family in chickpea (C. arietinum L.). Scientific reports, 12(1), 1-24.
    Cited By
  7. Farahani, S., Maleki, M., Ford, R., Mehrabi, R., Kanouni, H., Kema, G. H., ... & Talebi, R. (2022). Genome-wide association mapping for isolate-specific resistance to Ascochyta rabiei in chickpea (Cicer arietinum L.). Physiological and Molecular Plant Pathology, 121, 101883.
    Cited By
  8. Boeglin, L., Morère Le-Paven, M. C., Clochard, T., Fustec, J., & Limami, A. M. (2022). Pisum sativum Response to Nitrate as Affected by Rhizobium leguminosarum-Derived Signals. Plants, 11(15), 1966.
    Cited By
  9. Chammakhi, C., Boscari, A., Pacoud, M., Aubert, G., Mhadhbi, H., & Brouquisse, R. (2022). Nitric Oxide Metabolic Pathway in Drought-Stressed Nodules of Faba Bean (Vicia faba L.). International Journal of Molecular Sciences, 23(21), 13057.
    Cited By
  10. Santos, C., Martins, D. C., González-Bernal, M. J., Rubiales, D., & Patto, M. C. V. (2022). Integrating Phenotypic and Gene Expression Linkage Mapping to Dissect Rust Resistance in Chickling Pea. Frontiers in Plant Science, 13.
    Cited By
  11. Piergiovanni, A. R. (2022). Ex situ conservation of plant genetic resources: An overview of chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medik.) worldwide collections. Diversity, 14(11), 941.
    Cited By
  12. Wu, L., Fredua-Agyeman, R., Strelkov, S. E., Chang, K. F., & Hwang, S. F. (2022). Identification of quantitative trait loci associated with partial resistance to fusarium root rot and wilt caused by Fusarium graminearum in field pea. Frontiers in Plant Science, 12, 784593.
    Cited By

2021 (15)

  1. Castillejo, M. Á., Villegas-Fernández, Á. M., Hernández-Lao, T., & Rubiales, D. (2021). Photosystem II Repair Cycle in Faba Bean May Play a Role in Its Resistance to Botrytis fabae InfectionAgronomy, 11(11), 2247.
    Cited By
  2. Staton, M., Cannon, E., Sanderson, L. A., Wegrzyn, J., Anderson, T., Buehler, S., ... & Ficklin, S. (2021). Tripal, a community update after 10 years of supporting open source, standards-based genetic, genomic and breeding databasesBriefings in bioinformatics, 22(6), bbab238.
    Cited By
  3. Khalifa, K. A., Ibrahim, S. D., El-Garhy, H. A., Moustafa, M. M., Maalouf, F., Alsamman, A. M., ... & El Allali, A. (2021). Developing a new genic SSR primer database in faba bean (Vicia faba L.)Journal of Applied Genetics, 1-15.
    Cited By
  4. Debler, J. W., Henares, B. M., & Lee, R. C. (2021). Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hostsPlant Cell Reports, 1-14.
    Cited By
  5. Jung, S., Lee, T., Gasic, K., Campbell, B. T., Yu, J., Humann, J., ... & Main, D. (2021). The Breeding Information Management System (BIMS): an online resource for crop breeding. Database, 2021.
    Cited By
  6. Weeden, N. F., Coyne, C. J., Lavin, M., & McPhee, K. (2021). Distinguishing among Pisum accessions using a hypervariable intron within Mendel’s green/yellow cotyledon gene. Genetic Resources and Crop Evolution, 1-19.
    Cited By
  7. Newman, T. E., Jacques, S., Grime, C., Kamphuis, F. L., Lee, R. C., Berger, J., & Kamphuis, L. G. (2021). Identification of novel sources of resistance to ascochyta blight in a collection of wild Cicer accessions. Phytopathology®, 111(2), 369-379.
    Cited By
  8. Jung, S., Cheng, C. H., Buble, K., Lee, T., Humann, J., Yu, J., ... & Main, D. (2021). Tripal MegaSearch: a tool for interactive and customizable query and download of big data. Database, 2021.
    Cited By
  9. Rajendran, K., Coyne, C. J., Zheng, P., Saha, G., Main, D., Amin, N., ... & Kumar, S. (2021). Genetic diversity and GWAS of agronomic traits using an ICARDA lentil (Lens culinaris Medik.) Reference Plus collection. Plant Genetic Resources, 19(4), 279-288.
    Cited By
  10. Gawłowska, M., Knopkiewicz, M., Święcicki, W., Boros, L., & Wawer, A. (2021). Quantitative trait loci for stem strength properties and lodging in two pea biparental mapping populations. Crop Science.
    Cited By
  11. Powers, S., Boatwright, J. L., & Thavarajah, D. (2021). Genome-wide association studies of mineral and phytic acid concentrations in pea (Pisum sativum L.) to evaluate biofortification potential. G3, 11(9), jkab227.
    Cited By
  12. Wu, L., Fredua-Agyeman, R., Hwang, S. F., Chang, K. F., Conner, R. L., McLaren, D. L., & Strelkov, S. E. (2021). Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theoretical and Applied Genetics, 1-26.
    Cited By
  13. Guerra‐García, A., Gioia, T., von Wettberg, E., Logozzo, G., Papa, R., Bitocchi, E., & Bett, K. E. (2021). Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well‐Represented Collections. Current Protocols, 1(5), e134.
    Cited By
  14. Bari, M., Al, A., Zheng, P., Viera, I., Worral, H., Szwiec, S., ... & Bandillo, N. (2021). Harnessing genetic diversity in the USDA pea germplasm collection through genomic prediction. Frontiers in Genetics, 2273.
    Cited By
  15. Wu, L., Fredua-Agyeman, R., Strelkov, S. E., Chang, K. F., & Hwang, S. F. (2021). Identification of Quantitative Trait Loci Associated With Partial Resistance to Fusarium Root Rot and Wilt Caused by Fusarium graminearum in Field Pea. Frontiers in plant science, 12, 784593-784593.
    Cited By

2020 (9)

  1. Mokhtar, M. M., Hussein, E. H., El-Assal, S. E. D. S., & Atia, M. A. (2020). Vf ODB: a comprehensive database of ESTs, EST-SSRs, mtSSRs, microRNA-target markers and genetic maps in Vicia fabaAoB Plants12(6), plaa064.
    Cited By
  2. Santos, C., Martins, D., Rubiales, D., & Vaz Patto, M. C. (2020). Partial resistance against Erysiphe pisi and E. trifolii under different genetic control in Lathyrus cicera: Outcomes from a linkage mapping approachPlant Disease104(11), 2875-2884.
    Cited By
  3. Annicchiarico, P., Nazzicari, N., Laouar, M., Thami-Alami, I., Romani, M., & Pecetti, L. (2020). Development and Proof-of-Concept Application of Genome-Enabled Selection for Pea Grain Yield under Severe Terminal DroughtInternational journal of molecular sciences21(7), 2414.
    Cited By
  4. Santiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1. 1 is a high affinity sucrose‐proton co‐transporterPlant direct4(8), e00260.
    Cited By
  5. Analin, B., Mohanan, A., Bakka, K., & Challabathula, D. (2020). Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditionsPlant Physiology and Biochemistry154, 248-259.
    Cited By
  6. Berger, A., Guinand, S., Boscari, A., Puppo, A., & Brouquisse, R. (2020). Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentrationNew Phytologist227(1), 84-98.
    Cited By
  7. Castillejo, M. Á., Fondevilla-Aparicio, S., Fuentes-Almagro, C., & Rubiales, D. (2020). Quantitative analysis of target peptides related to resistance against ascochyta blight (Peyronellaea pinodes) in PeaJournal of proteome research19(3), 1000-1012.
    Cited By
  8. Carbonnel, S., Torabi, S., Griesmann, M., Bleek, E., Tang, Y., Buchka, S., ... & Gutjahr, C. (2020). Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancyPLoS Genetics16(12), e1009249.
    Cited By
  9. Albanese, P., Tamara, S., Saracco, G., Scheltema, R. A., & Pagliano, C. (2020). How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometryNature communications11(1), 1-14.
    Cited By

2019 (11)

  1. Fanani, M. Z., Fukushima, E. O., Sawai, S., Tang, J., Ishimori, M., Sudo, H., ... & Muranaka, T. (2019). Molecular basis of C-30 product regioselectivity of legume oxidases involved in high-value triterpenoid biosynthesisFrontiers in Plant Science10, 1520.
    Cited By
  2. Sanderson, L. A., Caron, C. T., Tan, R., Shen, Y., Liu, R., & Bett, K. E. (2019). KnowPulse: a web-resource focused on diversity data for pulse crop improvementFrontiers in plant science10.
    Cited By
  3. Kumar, H., Singh, A., Dikshit, H. K., Mishra, G. P., Aski, M., Meena, M. C., & Kumar, S. (2019). Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.)Journal of genetics98(3), 66.
    Cited By
  4. Ortega, R., Hecht, V., Freeman, J., Rubio, J., Carrasquilla-Garcia, N., Mir, R. R., ... & Weller, J. L. (2019). Altered expression of an FT cluster underlies a major locus controlling domestication-related changes to chickpea phenology and growth habitFrontiers in plant science10, 824.
    Cited By
  5. Albanese, P., Manfredi, M., Marengo, E., Saracco, G., & Pagliano, C. (2019). Structural and functional differentiation of the light‐harvesting protein Lhcb4 during land plant diversificationPhysiologia plantarum166(1), 336-350.
    Cited By
  6. Sun, Y., Wu, Z., Wang, Y., Yang, J., Wei, G., & Chou, M. (2019). Identification of Phytocyanin Gene Family in Legume Plants and Their Involvement in Nodulation of Medicago truncatulaPlant and Cell Physiology, 60(4), 900-915.
    Cited By
  7. Mousavi‐Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., ... & Edwards, D. (2019). Adapting legume crops to climate change using genomic approachesPlant, cell & environment, 42(1), 6-19.
    Cited By
  8. Buble, K., Jung, S., Humann, J. L., Yu, J., Cheng, C. H., Lee, T., ... & Wegrzyn, J. L. (2019). Tripal MapViewer: A tool for interactive visualization and comparison of genetic mapsDatabase2019.
    Cited By
  9. Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., ... & Xu, Y. (2019). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit cropsNucleic acids research47(D1), D1128-D1136.
    Cited By
  10. Day, P. M., Inoue, K., & Theg, S. M. (2019). Chloroplast outer membrane β-barrel proteins use components of the general import apparatusThe Plant Cell31(8), 1845-1855.
    Cited By
  11. Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2019). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactionsProtoplasma256(2), 449-457.
    Cited By

2018 (7)

  1. Reiser, L., Harper, L., Freeling, M., Han, B., & Luan, S. (2018). FAIR: A call to make published data more findable, accessible, interoperable, and reusable. Molecular plant, 11(9), 1105-1108.
    Cited By
  2. Moreau, C., Hofer, J. M., Eléouët, M., Sinjushin, A., Ambrose, M., Skøt, K., ... & Ferrándiz, C. (2018). Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum)New Phytologist, 220(1), 288-299.
    Cited By
  3. Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2018). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions. Protoplasma, 1-9.
    Cited By
  4. Abdelrahman, M., Jogaiah, S., Burritt, D. J., & Tran, L. S. P. (2018). Legume genetic resources and transcriptome dynamics under abiotic stress conditionsPlant, cell & environment, 41(9), 1972-1983.
    Cited By
  5. Garneau, M. G., Tan, Q., & Tegeder, M. (2018). Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutritionJournal of experimental botany, 69(21), 5205-5219.
    Cited By
  6. Albanese, P., Manfredi, M., Re, A., Marengo, E., Saracco, G., & Pagliano, C. (2018). Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integrationThe Plant Journal, 96(4), 786-800.
    Cited By
  7. Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., ... & Zhang, L. (2018). The sequenced angiosperm genomes and genome databases. Frontiers in plant science, 9, 418.
    Cited By

2017 (7)

  1. Jung, S., Lee, T., Cheng, C. H., Ficklin, S., Yu, J., Humann, J., & Main, D. (2017). Extension modules for storage, visualization and querying of genomic, genetic and breeding data in Tripal databasesDatabase, bax092.
    Cited By
  2. Serova, T. A., Tikhonovich, I. A., & Tsyganov, V. E. (2017). Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalizationJournal of plant physiology, 212, 29-44.
    Cited By
  3. Meisrimler, C. N., Wienkoop, S., & Lüthje, S. (2017). Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth MarkersProteomes, 5(1), 8.
    Cited By
  4. Sagi, M. S., Deokar, A. A., & Tar’an, B. (2017). Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infectionFrontiers in Plant Science, 8, 838.
    Cited By
  5. Santo, T., Pereira, R., & Leitão, J. (2017). The pea (Pisum sativum L.) rogue paramutation is accompanied by alterations in the methylation pattern of specific genomic sequencesEpigenomes, 1(1), 6.
    Cited By
  6. Holdsworth, W. L., Gazave, E., Cheng, P., Myers, J. R., Gore, M. A., Coyne, C. J., ... & Mazourek, M. (2017). A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture research, 4, 17017.
    Cited By
  7. Albanese, P., Melero, R., Engel, B. D., Grinzato, A., Berto, P., Manfredi, M., ... & Saracco, G. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific reports, 7(1), 10067.
    Cited By

2016 (9)

  1. Castillejo, M. Á., Iglesias‐García, R., Wienkoop, S., & Rubiales, D. (2016). Label‐free quantitative proteomic analysis of tolerance to drought in Pisum sativumProteomics16(21), 2776-2787.
    Cited By
  2. Dash, S., Campbell, J. D., Cannon, E. K., Cleary, A. M., Huang, W., Kalberer, S. R., ... & Weeks, N. T. (2016). Legume information system (LegumeInfo. org): a key component of a set of federated data resources for the legume familyNucleic acids research44(D1), D1181-D1188.
    Cited By
  3. Li, J., Dai, X., Zhuang, Z., & Zhao, P. X. (2016). LegumeIP 2.0—a platform for the study of gene function and genome evolution in legumesNucleic acids research44(D1), D1189-D1194.
    Cited By
  4. Deokar, A. A., & Tar'an, B. (2016). Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.)Frontiers in plant science7, 1802.
    Cited By
  5. Jung, S., Lee, T., Ficklin, S., Yu, J., Cheng, C. H., & Main, D. (2016). Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in ChadoDatabase2016.
    Cited By
  6. Gupta, D. S., Cheng, P., Sablok, G., Thavarajah, P., Coyne, C. J., Kumar, S., ... & McGee, R. J. (2016). Development of a panel of unigene-derived polymorphic EST–SSR markers in lentil using public database informationThe Crop Journal4(5), 425-433.
    Cited By
  7. Ma, Y., Hu, J., Myers, J. R., Mazourek, M., Coyne, C. J., Main, D., ... & McGee, R. J. (2016). Development of SCAR markers linked to sin-2, the stringless pod trait in pea (Pisum sativum L.)Molecular Breeding36(7), 105.
    Cited By
  8. Boutet, G., Carvalho, S. A., Falque, M., Peterlongo, P., Lhuillier, E., Bouchez, O., ... & Baranger, A. (2016). SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL populationBMC genomics17(1), 121.
    Cited By
  9. Meisrimler, C. N., Wienkoop, S., Lyon, D., Geilfus, C. M., & Luethje, S. (2016). Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivarsJournal of proteomics140, 13-23.
    Cited By

2015 (5)

  1. Arun-Chinnappa, K. S., & McCurdy, D. W. (2015). De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell researchFrontiers in plant science6, 217.
    Cited By
  2. Shunmugam, A. S., Bock, C., Arganosa, G. C., Georges, F., Gray, G. R., & Warkentin, T. D. (2015). Accumulation of phosphorus-containing compounds in developing seeds of low-phytate pea (Pisum sativum L.) mutantsPlants4(1), 1-26.
    Cited By
  3. Yendrek, C. R., Koester, R. P., & Ainsworth, E. A. (2015). A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume cropsJournal of experimental botany66(22), 7101-7112.
    Cited By
  4. Sudheesh, S., Sawbridge, T. I., Cogan, N. O., Kennedy, P., Forster, J. W., & Kaur, S. (2015). De novo assembly and characterisation of the field pea transcriptome using RNA-SeqBMC genomics16(1), 611.
    Cited By
  5. Sudheesh, S., Lombardi, M., Leonforte, A., Cogan, N. O., Materne, M., Forster, J. W., & Kaur, S. (2015). Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance genePlant molecular biology reporter33(5), 1391-1403.
    Cited By

2014 (1)

  1. Duarte, J., Rivière, N., Baranger, A., Aubert, G., Burstin, J., Cornet, L., ... & Pilet-Nayel, M. L. (2014). Transcriptome sequencing for high throughput SNP development and genetic mapping in PeaBMC genomics15(1), 126.
    Cited By

2013 (1)

  1. Sanderson, L. A., Ficklin, S. P., Cheng, C. H., Jung, S., Feltus, F. A., Bett, K. E., & Main, D. (2013). Tripal v1. 1: a standards-based toolkit for construction of online genetic and genomic databasesDatabase2013.
    Cited By