PCD and CSFL Citations

Peer-reviewed papers citing PCD or CSFL
 

2022

  1. Abou-Khater, L., Maalouf, F., Jighly, A., Alsamman, A. M., Rubiales, D., Rispail, N., ... & Kumar, S. (2022). Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.) collectionScientific reports, 12(1), 1-13.
  2. Wu, L., Fredua-Agyeman, R., Strelkov, S. E., Chang, K. F., & Hwang, S. F. (2022). Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. International journal of molecular sciences, 23(17), 9744.
  3. Martins, L. B., Balint-Kurti, P., & Reberg-Horton, S. C. (2022). Genome-wide association study for morphological traits and resistance to Peryonella pinodes in the USDA pea single plant plus collection. G3, 12(9), jkac168.
  4. Derbyshire, M. C., Batley, J., & Edwards, D. (2022). Use of multiple ‘omics techniques to accelerate the breeding of abiotic stress tolerant crops. Current Plant Biology, 100262.
  5. Frailey, D. C., Zhang, Q., Wood, D. J., & Davis, T. M. (2022). Defining the mutation sites in chickpea nodulation mutants PM233 and PM405. BMC plant biology, 22(1), 1-12.
  6. Yadav, S., Yadava, Y. K., Kohli, D., Meena, S., Kalwan, G., Bharadwaj, C., ... & Jain, P. K. (2022). Genome-wide identification, in silico characterization and expression analysis of the RNA helicase gene family in chickpea (C. arietinum L.). Scientific reports, 12(1), 1-24.
  7. Farahani, S., Maleki, M., Ford, R., Mehrabi, R., Kanouni, H., Kema, G. H., ... & Talebi, R. (2022). Genome-wide association mapping for isolate-specific resistance to Ascochyta rabiei in chickpea (Cicer arietinum L.). Physiological and Molecular Plant Pathology, 121, 101883.
  8. Boeglin, L., Morère Le-Paven, M. C., Clochard, T., Fustec, J., & Limami, A. M. (2022). Pisum sativum Response to Nitrate as Affected by Rhizobium leguminosarum-Derived Signals. Plants, 11(15), 1966.
  9. Chammakhi, C., Boscari, A., Pacoud, M., Aubert, G., Mhadhbi, H., & Brouquisse, R. (2022). Nitric Oxide Metabolic Pathway in Drought-Stressed Nodules of Faba Bean (Vicia faba L.). International Journal of Molecular Sciences, 23(21), 13057.
  10. Santos, C., Martins, D. C., González-Bernal, M. J., Rubiales, D., & Patto, M. C. V. (2022). Integrating Phenotypic and Gene Expression Linkage Mapping to Dissect Rust Resistance in Chickling Pea. Frontiers in Plant Science, 13.

2021

  1. Castillejo, M. Á., Villegas-Fernández, Á. M., Hernández-Lao, T., & Rubiales, D. (2021). Photosystem II Repair Cycle in Faba Bean May Play a Role in Its Resistance to Botrytis fabae InfectionAgronomy, 11(11), 2247.
  2. Staton, M., Cannon, E., Sanderson, L. A., Wegrzyn, J., Anderson, T., Buehler, S., ... & Ficklin, S. (2021). Tripal, a community update after 10 years of supporting open source, standards-based genetic, genomic and breeding databasesBriefings in bioinformatics, 22(6), bbab238.
  3. Khalifa, K. A., Ibrahim, S. D., El-Garhy, H. A., Moustafa, M. M., Maalouf, F., Alsamman, A. M., ... & El Allali, A. (2021). Developing a new genic SSR primer database in faba bean (Vicia faba L.)Journal of Applied Genetics, 1-15.
  4. Debler, J. W., Henares, B. M., & Lee, R. C. (2021). Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hostsPlant Cell Reports, 1-14.
  5. Jung, S., Lee, T., Gasic, K., Campbell, B. T., Yu, J., Humann, J., ... & Main, D. (2021). The Breeding Information Management System (BIMS): an online resource for crop breeding. Database, 2021.
  6. Weeden, N. F., Coyne, C. J., Lavin, M., & McPhee, K. (2021). Distinguishing among Pisum accessions using a hypervariable intron within Mendel’s green/yellow cotyledon gene. Genetic Resources and Crop Evolution, 1-19.
  7. Newman, T. E., Jacques, S., Grime, C., Kamphuis, F. L., Lee, R. C., Berger, J., & Kamphuis, L. G. (2021). Identification of novel sources of resistance to ascochyta blight in a collection of wild Cicer accessions. Phytopathology®, 111(2), 369-379.
  8. Jung, S., Cheng, C. H., Buble, K., Lee, T., Humann, J., Yu, J., ... & Main, D. (2021). Tripal MegaSearch: a tool for interactive and customizable query and download of big data. Database, 2021.
  9. Rajendran, K., Coyne, C. J., Zheng, P., Saha, G., Main, D., Amin, N., ... & Kumar, S. (2021). Genetic diversity and GWAS of agronomic traits using an ICARDA lentil (Lens culinaris Medik.) Reference Plus collection. Plant Genetic Resources, 19(4), 279-288.
  10. Gawłowska, M., Knopkiewicz, M., Święcicki, W., Boros, L., & Wawer, A. (2021). Quantitative trait loci for stem strength properties and lodging in two pea biparental mapping populations. Crop Science.
  11. Powers, S., Boatwright, J. L., & Thavarajah, D. (2021). Genome-wide association studies of mineral and phytic acid concentrations in pea (Pisum sativum L.) to evaluate biofortification potential. G3, 11(9), jkab227.
  12. Wu, L., Fredua-Agyeman, R., Hwang, S. F., Chang, K. F., Conner, R. L., McLaren, D. L., & Strelkov, S. E. (2021). Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theoretical and Applied Genetics, 1-26.
  13. Guerra‐García, A., Gioia, T., von Wettberg, E., Logozzo, G., Papa, R., Bitocchi, E., & Bett, K. E. (2021). Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well‐Represented Collections. Current Protocols, 1(5), e134.
  14. Bari, M., Al, A., Zheng, P., Viera, I., Worral, H., Szwiec, S., ... & Bandillo, N. (2021). Harnessing genetic diversity in the USDA pea germplasm collection through genomic prediction. Frontiers in Genetics, 2273.
  15. Wu, L., Fredua-Agyeman, R., Strelkov, S. E., Chang, K. F., & Hwang, S. F. (2021). Identification of Quantitative Trait Loci Associated With Partial Resistance to Fusarium Root Rot and Wilt Caused by Fusarium graminearum in Field Pea. Frontiers in plant science, 12, 784593-784593.

2020

  1. Mokhtar, M. M., Hussein, E. H., El-Assal, S. E. D. S., & Atia, M. A. (2020). Vf ODB: a comprehensive database of ESTs, EST-SSRs, mtSSRs, microRNA-target markers and genetic maps in Vicia fabaAoB Plants12(6), plaa064.
  2. Santos, C., Martins, D., Rubiales, D., & Vaz Patto, M. C. (2020). Partial resistance against Erysiphe pisi and E. trifolii under different genetic control in Lathyrus cicera: Outcomes from a linkage mapping approachPlant Disease104(11), 2875-2884.
  3. Annicchiarico, P., Nazzicari, N., Laouar, M., Thami-Alami, I., Romani, M., & Pecetti, L. (2020). Development and Proof-of-Concept Application of Genome-Enabled Selection for Pea Grain Yield under Severe Terminal DroughtInternational journal of molecular sciences21(7), 2414.
  4. Santiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1. 1 is a high affinity sucrose‐proton co‐transporterPlant direct4(8), e00260.
  5. Analin, B., Mohanan, A., Bakka, K., & Challabathula, D. (2020). Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditionsPlant Physiology and Biochemistry154, 248-259.
  6. Berger, A., Guinand, S., Boscari, A., Puppo, A., & Brouquisse, R. (2020). Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentrationNew Phytologist227(1), 84-98.
  7. Castillejo, M. Á., Fondevilla-Aparicio, S., Fuentes-Almagro, C., & Rubiales, D. (2020). Quantitative analysis of target peptides related to resistance against ascochyta blight (Peyronellaea pinodes) in PeaJournal of proteome research19(3), 1000-1012.
  8. Carbonnel, S., Torabi, S., Griesmann, M., Bleek, E., Tang, Y., Buchka, S., ... & Gutjahr, C. (2020). Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancyPLoS Genetics16(12), e1009249.
  9. Albanese, P., Tamara, S., Saracco, G., Scheltema, R. A., & Pagliano, C. (2020). How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometryNature communications11(1), 1-14.

2019

  1. Fanani, M. Z., Fukushima, E. O., Sawai, S., Tang, J., Ishimori, M., Sudo, H., ... & Muranaka, T. (2019). Molecular basis of C-30 product regioselectivity of legume oxidases involved in high-value triterpenoid biosynthesisFrontiers in Plant Science10, 1520.
  2. Sanderson, L. A., Caron, C. T., Tan, R., Shen, Y., Liu, R., & Bett, K. E. (2019). KnowPulse: a web-resource focused on diversity data for pulse crop improvementFrontiers in plant science10.
  3. Kumar, H., Singh, A., Dikshit, H. K., Mishra, G. P., Aski, M., Meena, M. C., & Kumar, S. (2019). Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.)Journal of genetics98(3), 66.
  4. Ortega, R., Hecht, V., Freeman, J., Rubio, J., Carrasquilla-Garcia, N., Mir, R. R., ... & Weller, J. L. (2019). Altered expression of an FT cluster underlies a major locus controlling domestication-related changes to chickpea phenology and growth habitFrontiers in plant science10, 824.
  5. Albanese, P., Manfredi, M., Marengo, E., Saracco, G., & Pagliano, C. (2019). Structural and functional differentiation of the light‐harvesting protein Lhcb4 during land plant diversificationPhysiologia plantarum166(1), 336-350.
  6. Sun, Y., Wu, Z., Wang, Y., Yang, J., Wei, G., & Chou, M. (2019). Identification of Phytocyanin Gene Family in Legume Plants and Their Involvement in Nodulation of Medicago truncatulaPlant and Cell Physiology.
  7. Mousavi‐Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., ... & Edwards, D. (2019). Adapting legume crops to climate change using genomic approachesPlant, cell & environment, 42(1), 6-19.
  8. Sun, Yali, Zefeng Wu, Yujie Wang, Jieyu Yang, Gehong Wei, and Minxia Chou. (2019). Identification of Phytocyanin Gene Family in Legume Plants and Their Involvement in Nodulation of Medicago truncatulaPlant and Cell Physiology, 60(4), 900-915.
  9. Mousavi‐Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., ... & Edwards, D. (2019). Adapting legume crops to climate change using genomic approachesPlant, cell & environment, 42(1), 6-19.
  10. Buble, K., Jung, S., Humann, J. L., Yu, J., Cheng, C. H., Lee, T., ... & Wegrzyn, J. L. (2019). Tripal MapViewer: A tool for interactive visualization and comparison of genetic mapsDatabase2019.
  11. Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., ... & Xu, Y. (2019). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit cropsNucleic acids research47(D1), D1128-D1136.
  12. Day, P. M., Inoue, K., & Theg, S. M. (2019). Chloroplast outer membrane β-barrel proteins use components of the general import apparatusThe Plant Cell31(8), 1845-1855.
  13. Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2019). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactionsProtoplasma256(2), 449-457.

2018

  1. Reiser, L., Harper, L., Freeling, M., Han, B., & Luan, S. (2018). FAIR: A call to make published data more findable, accessible, interoperable, and reusable. Molecular plant, 11(9), 1105-1108.
  2. Moreau, C., Hofer, J. M., Eléouët, M., Sinjushin, A., Ambrose, M., Skøt, K., ... & Ferrándiz, C. (2018). Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum)New Phytologist, 220(1), 288-299.
  3. Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2018). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions. Protoplasma, 1-9.
  4. Abdelrahman, M., Jogaiah, S., Burritt, D. J., & Tran, L. S. P. (2018). Legume genetic resources and transcriptome dynamics under abiotic stress conditionsPlant, cell & environment, 41(9), 1972-1983.
  5. Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., ... & Xu, Y. (2018). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit cropsNucleic acids research, 47(D1), D1128-D1136.
  6. Garneau, M. G., Tan, Q., & Tegeder, M. (2018). Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutritionJournal of experimental botany, 69(21), 5205-5219.
  7. Albanese, P., Manfredi, M., Re, A., Marengo, E., Saracco, G., & Pagliano, C. (2018). Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integrationThe Plant Journal, 96(4), 786-800.
  8. Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., ... & Zhang, L. (2018). The sequenced angiosperm genomes and genome databases. Frontiers in plant science, 9, 418.

2017

  1. Jung, S., Lee, T., Cheng, C. H., Ficklin, S., Yu, J., Humann, J., & Main, D. (2017). Extension modules for storage, visualization and querying of genomic, genetic and breeding data in Tripal databasesDatabase, bax092.
  2. Serova, T. A., Tikhonovich, I. A., & Tsyganov, V. E. (2017). Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalizationJournal of plant physiology, 212, 29-44.
  3. Meisrimler, C. N., Wienkoop, S., & Lüthje, S. (2017). Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth MarkersProteomes, 5(1), 8.
  4. Sagi, M. S., Deokar, A. A., & Tar’an, B. (2017). Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infectionFrontiers in Plant Science, 8, 838.
  5. Santo, T., Pereira, R., & Leitão, J. (2017). The pea (Pisum sativum L.) rogue paramutation is accompanied by alterations in the methylation pattern of specific genomic sequencesEpigenomes, 1(1), 6.
  6. Holdsworth, W. L., Gazave, E., Cheng, P., Myers, J. R., Gore, M. A., Coyne, C. J., ... & Mazourek, M. (2017). A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture research, 4, 17017.
  7. Albanese, P., Melero, R., Engel, B. D., Grinzato, A., Berto, P., Manfredi, M., ... & Saracco, G. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific reports, 7(1), 10067.

2016

  1. Castillejo, M. Á., Iglesias‐García, R., Wienkoop, S., & Rubiales, D. (2016). Label‐free quantitative proteomic analysis of tolerance to drought in Pisum sativumProteomics16(21), 2776-2787.
  2. Dash, S., Campbell, J. D., Cannon, E. K., Cleary, A. M., Huang, W., Kalberer, S. R., ... & Weeks, N. T. (2016). Legume information system (LegumeInfo. org): a key component of a set of federated data resources for the legume familyNucleic acids research44(D1), D1181-D1188.
  3. Li, J., Dai, X., Zhuang, Z., & Zhao, P. X. (2016). LegumeIP 2.0—a platform for the study of gene function and genome evolution in legumesNucleic acids research44(D1), D1189-D1194.
  4. Deokar, A. A., & Tar'an, B. (2016). Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.)Frontiers in plant science7, 1802.
  5. Jung, S., Lee, T., Ficklin, S., Yu, J., Cheng, C. H., & Main, D. (2016). Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in ChadoDatabase2016.
  6. Gupta, D. S., Cheng, P., Sablok, G., Thavarajah, P., Coyne, C. J., Kumar, S., ... & McGee, R. J. (2016). Development of a panel of unigene-derived polymorphic EST–SSR markers in lentil using public database informationThe Crop Journal4(5), 425-433.
  7. Ma, Y., Hu, J., Myers, J. R., Mazourek, M., Coyne, C. J., Main, D., ... & McGee, R. J. (2016). Development of SCAR markers linked to sin-2, the stringless pod trait in pea (Pisum sativum L.)Molecular Breeding36(7), 105.
  8. Boutet, G., Carvalho, S. A., Falque, M., Peterlongo, P., Lhuillier, E., Bouchez, O., ... & Baranger, A. (2016). SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL populationBMC genomics17(1), 121.
  9. Meisrimler, C. N., Wienkoop, S., Lyon, D., Geilfus, C. M., & Luethje, S. (2016). Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivarsJournal of proteomics140, 13-23.

2015

  1. Arun-Chinnappa, K. S., & McCurdy, D. W. (2015). De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell researchFrontiers in plant science6, 217.
  2. Shunmugam, A. S., Bock, C., Arganosa, G. C., Georges, F., Gray, G. R., & Warkentin, T. D. (2015). Accumulation of phosphorus-containing compounds in developing seeds of low-phytate pea (Pisum sativum L.) mutantsPlants4(1), 1-26.
  3. Yendrek, C. R., Koester, R. P., & Ainsworth, E. A. (2015). A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume cropsJournal of experimental botany66(22), 7101-7112.
  4. Sudheesh, S., Sawbridge, T. I., Cogan, N. O., Kennedy, P., Forster, J. W., & Kaur, S. (2015). De novo assembly and characterisation of the field pea transcriptome using RNA-SeqBMC genomics16(1), 611.
  5. Sudheesh, S., Lombardi, M., Leonforte, A., Cogan, N. O., Materne, M., Forster, J. W., & Kaur, S. (2015). Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance genePlant molecular biology reporter33(5), 1391-1403.

2014

  1. Duarte, J., Rivière, N., Baranger, A., Aubert, G., Burstin, J., Cornet, L., ... & Pilet-Nayel, M. L. (2014). Transcriptome sequencing for high throughput SNP development and genetic mapping in PeaBMC genomics15(1), 126.

2013

  1. Sanderson, L. A., Ficklin, S. P., Cheng, C. H., Jung, S., Feltus, F. A., Bett, K. E., & Main, D. (2013). Tripal v1. 1: a standards-based toolkit for construction of online genetic and genomic databasesDatabase2013.