PCD and CSFL Citations

Peer-reviewed papers citing CSFL 
 

  1. Fanani, M. Z., Fukushima, E. O., Sawai, S., Tang, J., Ishimori, M., Sudo, H., ... & Muranaka, T. (2019). Molecular basis of C-30 product regioselectivity of legume oxidases involved in high-value triterpenoid biosynthesisFrontiers in Plant Science10, 1520.
  2. Sanderson, L. A., Caron, C. T., Tan, R., Shen, Y., Liu, R., & Bett, K. E. (2019). KnowPulse: a web-resource focused on diversity data for pulse crop improvementFrontiers in plant science10.
  3. Kumar, H., Singh, A., Dikshit, H. K., Mishra, G. P., Aski, M., Meena, M. C., & Kumar, S. (2019). Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.)Journal of genetics98(3), 66.
  4. Ortega, R., Hecht, V., Freeman, J., Rubio, J., Carrasquilla-Garcia, N., Mir, R. R., ... & Weller, J. L. (2019). Altered expression of an FT cluster underlies a major locus controlling domestication-related changes to chickpea phenology and growth habitFrontiers in plant science10, 824.
  5. Albanese, P., Manfredi, M., Marengo, E., Saracco, G., & Pagliano, C. (2019). Structural and functional differentiation of the light‐harvesting protein Lhcb4 during land plant diversificationPhysiologia plantarum166(1), 336-350.
  6. Sun, Y., Wu, Z., Wang, Y., Yang, J., Wei, G., & Chou, M. (2019). Identification of Phytocyanin Gene Family in Legume Plants and Their Involvement in Nodulation of Medicago truncatulaPlant and Cell Physiology.
  7. Mousavi‐Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., ... & Edwards, D. (2019). Adapting legume crops to climate change using genomic approachesPlant, cell & environment, 42(1), 6-19.
  8. Sun, Yali, Zefeng Wu, Yujie Wang, Jieyu Yang, Gehong Wei, and Minxia Chou. (2019). Identification of Phytocyanin Gene Family in Legume Plants and Their Involvement in Nodulation of Medicago truncatulaPlant and Cell Physiology, 60(4), 900-915.
  9. Mousavi‐Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., ... & Edwards, D. (2019). Adapting legume crops to climate change using genomic approachesPlant, cell & environment, 42(1), 6-19.
  10. Buble, K., Jung, S., Humann, J. L., Yu, J., Cheng, C. H., Lee, T., ... & Wegrzyn, J. L. (2019). Tripal MapViewer: A tool for interactive visualization and comparison of genetic mapsDatabase2019.
  11. Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., ... & Xu, Y. (2019). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit cropsNucleic acids research47(D1), D1128-D1136.
  12. Day, P. M., Inoue, K., & Theg, S. M. (2019). Chloroplast outer membrane β-barrel proteins use components of the general import apparatusThe Plant Cell31(8), 1845-1855.
  13. Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2019). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactionsProtoplasma256(2), 449-457.
  14. Reiser, L., Harper, L., Freeling, M., Han, B., & Luan, S. (2018). FAIR: A call to make published data more findable, accessible, interoperable, and reusable. Molecular plant, 11(9), 1105-1108.
  15. Moreau, C., Hofer, J. M., Eléouët, M., Sinjushin, A., Ambrose, M., Skøt, K., ... & Ferrándiz, C. (2018). Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum)New Phytologist, 220(1), 288-299.
  16. Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2018). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions. Protoplasma, 1-9.
  17. Abdelrahman, M., Jogaiah, S., Burritt, D. J., & Tran, L. S. P. (2018). Legume genetic resources and transcriptome dynamics under abiotic stress conditionsPlant, cell & environment, 41(9), 1972-1983.
  18. Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., ... & Xu, Y. (2018). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit cropsNucleic acids research, 47(D1), D1128-D1136.
  19. Garneau, M. G., Tan, Q., & Tegeder, M. (2018). Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutritionJournal of experimental botany, 69(21), 5205-5219.
  20. Albanese, P., Manfredi, M., Re, A., Marengo, E., Saracco, G., & Pagliano, C. (2018). Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integrationThe Plant Journal, 96(4), 786-800.
  21. Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., ... & Zhang, L. (2018). The sequenced angiosperm genomes and genome databases. Frontiers in plant science, 9, 418.
  22. Jung, S., Lee, T., Cheng, C. H., Ficklin, S., Yu, J., Humann, J., & Main, D. (2017). Extension modules for storage, visualization and querying of genomic, genetic and breeding data in Tripal databasesDatabase, bax092.
  23. Serova, T. A., Tikhonovich, I. A., & Tsyganov, V. E. (2017). Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalizationJournal of plant physiology, 212, 29-44.
  24. Meisrimler, C. N., Wienkoop, S., & Lüthje, S. (2017). Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth MarkersProteomes, 5(1), 8.
  25. Sagi, M. S., Deokar, A. A., & Tar’an, B. (2017). Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infectionFrontiers in Plant Science, 8, 838.
  26. Santo, T., Pereira, R., & Leitão, J. (2017). The pea (Pisum sativum L.) rogue paramutation is accompanied by alterations in the methylation pattern of specific genomic sequencesEpigenomes, 1(1), 6.
  27. Holdsworth, W. L., Gazave, E., Cheng, P., Myers, J. R., Gore, M. A., Coyne, C. J., ... & Mazourek, M. (2017). A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture research, 4, 17017.
  28. Albanese, P., Melero, R., Engel, B. D., Grinzato, A., Berto, P., Manfredi, M., ... & Saracco, G. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific reports, 7(1), 10067.
  29. Castillejo, M. Á., Iglesias‐García, R., Wienkoop, S., & Rubiales, D. (2016). Label‐free quantitative proteomic analysis of tolerance to drought in Pisum sativumProteomics16(21), 2776-2787.
  30. Dash, S., Campbell, J. D., Cannon, E. K., Cleary, A. M., Huang, W., Kalberer, S. R., ... & Weeks, N. T. (2016). Legume information system (LegumeInfo. org): a key component of a set of federated data resources for the legume familyNucleic acids research44(D1), D1181-D1188.
  31. Li, J., Dai, X., Zhuang, Z., & Zhao, P. X. (2016). LegumeIP 2.0—a platform for the study of gene function and genome evolution in legumesNucleic acids research44(D1), D1189-D1194.
  32. Deokar, A. A., & Tar'an, B. (2016). Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.)Frontiers in plant science7, 1802.
  33. Jung, S., Lee, T., Ficklin, S., Yu, J., Cheng, C. H., & Main, D. (2016). Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in ChadoDatabase2016.
  34. Gupta, D. S., Cheng, P., Sablok, G., Thavarajah, P., Coyne, C. J., Kumar, S., ... & McGee, R. J. (2016). Development of a panel of unigene-derived polymorphic EST–SSR markers in lentil using public database informationThe Crop Journal4(5), 425-433.
  35. Ma, Y., Hu, J., Myers, J. R., Mazourek, M., Coyne, C. J., Main, D., ... & McGee, R. J. (2016). Development of SCAR markers linked to sin-2, the stringless pod trait in pea (Pisum sativum L.)Molecular Breeding36(7), 105.
  36. Boutet, G., Carvalho, S. A., Falque, M., Peterlongo, P., Lhuillier, E., Bouchez, O., ... & Baranger, A. (2016). SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL populationBMC genomics17(1), 121.
  37. Meisrimler, C. N., Wienkoop, S., Lyon, D., Geilfus, C. M., & Luethje, S. (2016). Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivarsJournal of proteomics140, 13-23.
  38. Arun-Chinnappa, K. S., & McCurdy, D. W. (2015). De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell researchFrontiers in plant science6, 217.
  39. Shunmugam, A. S., Bock, C., Arganosa, G. C., Georges, F., Gray, G. R., & Warkentin, T. D. (2015). Accumulation of phosphorus-containing compounds in developing seeds of low-phytate pea (Pisum sativum L.) mutantsPlants4(1), 1-26.
  40. Yendrek, C. R., Koester, R. P., & Ainsworth, E. A. (2015). A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume cropsJournal of experimental botany66(22), 7101-7112.
  41. Sudheesh, S., Sawbridge, T. I., Cogan, N. O., Kennedy, P., Forster, J. W., & Kaur, S. (2015). De novo assembly and characterisation of the field pea transcriptome using RNA-SeqBMC genomics16(1), 611.
  42. Sudheesh, S., Lombardi, M., Leonforte, A., Cogan, N. O., Materne, M., Forster, J. W., & Kaur, S. (2015). Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance genePlant molecular biology reporter33(5), 1391-1403.
  43. Duarte, J., Rivière, N., Baranger, A., Aubert, G., Burstin, J., Cornet, L., ... & Pilet-Nayel, M. L. (2014). Transcriptome sequencing for high throughput SNP development and genetic mapping in PeaBMC genomics15(1), 126.
  44. Sanderson, L. A., Ficklin, S. P., Cheng, C. H., Jung, S., Feltus, F. A., Bett, K. E., & Main, D. (2013). Tripal v1. 1: a standards-based toolkit for construction of online genetic and genomic databasesDatabase2013.