Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

Publication Overview
TitleComprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing
AuthorsFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP
TypeJournal Article
Journal NameBMC genomics
Volume12
Year2011
Page(s)227
CitationFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC genomics. 2011; 12:227.

Abstract

BACKGROUND
The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist.

RESULTS
We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format.

CONCLUSIONS
We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.

Features
This publication contains information about 84,267 features:
Feature NameUniquenameType
JI921822JI921822.1region
JI921821JI921821.1region
JI921820JI921820.1region
JI921819JI921819.1region
JI921818JI921818.1region
JI921817JI921817.1region
JI921816JI921816.1region
JI921815JI921815.1region
JI921814JI921814.1region
JI921813JI921813.1region
JI921812JI921812.1region
JI921811JI921811.1region
JI921810JI921810.1region
JI921809JI921809.1region
JI921808JI921808.1region
JI921807JI921807.1region
JI921806JI921806.1region
JI921805JI921805.1region
JI921804JI921804.1region
JI921803JI921803.1region
JI921802JI921802.1region
JI921801JI921801.1region
JI921800JI921800.1region
JI921799JI921799.1region
JI921798JI921798.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication Date2011
Journal AbbreviationBMC Genomics
DOI10.1186/1471-2164-12-227
Elocation10.1186/1471-2164-12-227
Journal CountryEngland
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Publication TypeResearch Support, Non-U.S. Gov't