Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

Publication Overview
TitleComprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing
AuthorsFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP
TypeJournal Article
Journal NameBMC genomics
Volume12
Year2011
Page(s)227
CitationFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC genomics. 2011; 12:227.

Abstract

BACKGROUND
The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist.

RESULTS
We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format.

CONCLUSIONS
We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.

Features
This publication contains information about 84,267 features:
Feature NameUniquenameType
JI918722JI918722.1region
JI918721JI918721.1region
JI918720JI918720.1region
JI918719JI918719.1region
JI918718JI918718.1region
JI918717JI918717.1region
JI918716JI918716.1region
JI918715JI918715.1region
JI918714JI918714.1region
JI918713JI918713.1region
JI918712JI918712.1region
JI918711JI918711.1region
JI918710JI918710.1region
JI918709JI918709.1region
JI918708JI918708.1region
JI918707JI918707.1region
JI918706JI918706.1region
JI918705JI918705.1region
JI918704JI918704.1region
JI918703JI918703.1region
JI918702JI918702.1region
JI918701JI918701.1region
JI918700JI918700.1region
JI918699JI918699.1region
JI918698JI918698.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication Date2011
Journal AbbreviationBMC Genomics
DOI10.1186/1471-2164-12-227
Elocation10.1186/1471-2164-12-227
Journal CountryEngland
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Publication TypeResearch Support, Non-U.S. Gov't