Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

Publication Overview
TitleComprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing
AuthorsFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP
TypeJournal Article
Journal NameBMC genomics
Volume12
Year2011
Page(s)227
CitationFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC genomics. 2011; 12:227.

Abstract

BACKGROUND
The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist.

RESULTS
We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format.

CONCLUSIONS
We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.

Features
This publication contains information about 84,267 features:
Feature NameUniquenameType
JI975698JI975698.1region
JI975697JI975697.1region
JI975696JI975696.1region
JI975695JI975695.1region
JI975694JI975694.1region
JI975693JI975693.1region
JI975692JI975692.1region
JI975691JI975691.1region
JI975690JI975690.1region
JI975689JI975689.1region
JI975688JI975688.1region
JI975687JI975687.1region
JI975686JI975686.1region
JI975685JI975685.1region
JI975684JI975684.1region
JI975683JI975683.1region
JI975682JI975682.1region
JI975681JI975681.1region
JI975680JI975680.1region
JI975679JI975679.1region
JI975678JI975678.1region
JI975677JI975677.1region
JI975676JI975676.1region
JI975675JI975675.1region
JI975674JI975674.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication Date2011
Journal AbbreviationBMC Genomics
DOI10.1186/1471-2164-12-227
Elocation10.1186/1471-2164-12-227
Journal CountryEngland
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Publication TypeResearch Support, Non-U.S. Gov't