Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

Publication Overview
TitleComprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing
AuthorsFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP
TypeJournal Article
Journal NameBMC genomics
Volume12
Year2011
Page(s)227
CitationFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC genomics. 2011; 12:227.

Abstract

BACKGROUND
The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist.

RESULTS
We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format.

CONCLUSIONS
We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.

Features
This publication contains information about 84,267 features:
Feature NameUniquenameType
JI907422JI907422.1region
JI907421JI907421.1region
JI907420JI907420.1region
JI907419JI907419.1region
JI907418JI907418.1region
JI907417JI907417.1region
JI907416JI907416.1region
JI907415JI907415.1region
JI907414JI907414.1region
JI907413JI907413.1region
JI907412JI907412.1region
JI907411JI907411.1region
JI907410JI907410.1region
JI907409JI907409.1region
JI907408JI907408.1region
JI907407JI907407.1region
JI907406JI907406.1region
JI907405JI907405.1region
JI907404JI907404.1region
JI907403JI907403.1region
JI907402JI907402.1region
JI907401JI907401.1region
JI907400JI907400.1region
JI907399JI907399.1region
JI907398JI907398.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication Date2011
Journal AbbreviationBMC Genomics
DOI10.1186/1471-2164-12-227
Elocation10.1186/1471-2164-12-227
Journal CountryEngland
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Publication TypeResearch Support, Non-U.S. Gov't