Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

Publication Overview
TitleComprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing
AuthorsFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP
TypeJournal Article
Journal NameBMC genomics
Volume12
Year2011
Page(s)227
CitationFranssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC genomics. 2011; 12:227.

Abstract

BACKGROUND
The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist.

RESULTS
We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format.

CONCLUSIONS
We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.

Features
This publication contains information about 84,267 features:
Feature NameUniquenameType
JI906172JI906172.1region
JI906171JI906171.1region
JI906170JI906170.1region
JI906169JI906169.1region
JI906168JI906168.1region
JI906167JI906167.1region
JI906166JI906166.1region
JI906165JI906165.1region
JI906164JI906164.1region
JI906163JI906163.1region
JI906162JI906162.1region
JI906161JI906161.1region
JI906160JI906160.1region
JI906159JI906159.1region
JI906158JI906158.1region
JI906157JI906157.1region
JI906156JI906156.1region
JI906155JI906155.1region
JI906154JI906154.1region
JI906153JI906153.1region
JI906152JI906152.1region
JI906151JI906151.1region
JI906150JI906150.1region
JI906149JI906149.1region
JI906148JI906148.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication Date2011
Journal AbbreviationBMC Genomics
DOI10.1186/1471-2164-12-227
Elocation10.1186/1471-2164-12-227
Journal CountryEngland
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Publication TypeResearch Support, Non-U.S. Gov't