A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).

Publication Overview
TitleA high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).
AuthorsGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S
TypeJournal Article
Journal NameFunctional & integrative genomics
Year2020
CitationGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).. Functional & integrative genomics. 2020 Aug 27.

Abstract

Genotyping-by-sequencing (GBS) allows rapid identification of markers for use in development of linkage maps, which expedite efficient breeding programs. In the present study, we have utilized GBS approach to identify and genotype single-nucleotide polymorphism (SNP) markers in an inter-specific RIL population of Cicer arietinum L. X C. reticulatum. A total of 141,639 raw SNPs were identified using the TASSEL-GBS pipeline. After stringent filtering, 8208 candidate SNPs were identified of which ~ 37% were localized in the intragenic regions followed by genic regions (~ 30%) and intergenic regions (~ 27%). We then utilized 6920 stringent selected SNPs from present study and 6714 SNPs and microsatellite markers available from previous studies for construction of linkage map. The resulting high-density linkage map comprising of eight linkage groups contained 13,590 markers which spanned 1299.14 cM of map length with an average marker density of 0.095 cM. Further, the derived linkage map was used to improve the available assembly of desi chickpea genome by anchoring 443 previously unplaced scaffolds onto eight linkage groups. The present efforts have refined anchoring of the desi chickpea genome assembly to 55.57% of the ~ 520 Mb of assembled desi genome. To the best of our knowledge, the linkage map generated in the present study represents one of the most dense linkage map developed for the crop till date. It will serve as a valuable resource for fine mapping and positional cloning of important quantitative trait loci (QTLs) associated with agronomical traits and also for anchoring and ordering of future genome sequence assemblies.

Features
This publication contains information about 8,210 features:
Feature NameUniquenameType
CaGBS252CaGBS252genetic_marker
CaGBS253CaGBS253genetic_marker
CaGBS254CaGBS254genetic_marker
CaGBS255CaGBS255genetic_marker
CaGBS256CaGBS256genetic_marker
CaGBS257CaGBS257genetic_marker
CaGBS258CaGBS258genetic_marker
CaGBS259CaGBS259genetic_marker
CaGBS260CaGBS260genetic_marker
CaGBS261CaGBS261genetic_marker
CaGBS262CaGBS262genetic_marker
CaGBS263CaGBS263genetic_marker
CaGBS264CaGBS264genetic_marker
CaGBS265CaGBS265genetic_marker
CaGBS266CaGBS266genetic_marker
CaGBS267CaGBS267genetic_marker
CaGBS268CaGBS268genetic_marker
CaGBS269CaGBS269genetic_marker
CaGBS270CaGBS270genetic_marker
CaGBS271CaGBS271genetic_marker
CaGBS272CaGBS272genetic_marker
CaGBS273CaGBS273genetic_marker
CaGBS274CaGBS274genetic_marker
CaGBS275CaGBS275genetic_marker
CaGBS276CaGBS276genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Chickpea-ICC4958/PI489777-RIL-2020
Stocks
This publication contains information about 1 stocks:
Stock NameUniquenameType
ICC4958/PI489777-RIL-2020ICC4958/PI489777-RIL-2020population
Properties
Additional details for this publication include:
Property NameValue
Publication Date2020 Aug 27
Journal AbbreviationFunct. Integr. Genomics
DOI10.1007/s10142-020-00751-y
Elocation10.1007/s10142-020-00751-y
ISSN1438-7948
eISSN1438-7948
Publication ModelPrint-Electronic
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany