A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).

Publication Overview
TitleA high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).
AuthorsGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S
TypeJournal Article
Journal NameFunctional & integrative genomics
Year2020
CitationGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).. Functional & integrative genomics. 2020 Aug 27.

Abstract

Genotyping-by-sequencing (GBS) allows rapid identification of markers for use in development of linkage maps, which expedite efficient breeding programs. In the present study, we have utilized GBS approach to identify and genotype single-nucleotide polymorphism (SNP) markers in an inter-specific RIL population of Cicer arietinum L. X C. reticulatum. A total of 141,639 raw SNPs were identified using the TASSEL-GBS pipeline. After stringent filtering, 8208 candidate SNPs were identified of which ~ 37% were localized in the intragenic regions followed by genic regions (~ 30%) and intergenic regions (~ 27%). We then utilized 6920 stringent selected SNPs from present study and 6714 SNPs and microsatellite markers available from previous studies for construction of linkage map. The resulting high-density linkage map comprising of eight linkage groups contained 13,590 markers which spanned 1299.14 cM of map length with an average marker density of 0.095 cM. Further, the derived linkage map was used to improve the available assembly of desi chickpea genome by anchoring 443 previously unplaced scaffolds onto eight linkage groups. The present efforts have refined anchoring of the desi chickpea genome assembly to 55.57% of the ~ 520 Mb of assembled desi genome. To the best of our knowledge, the linkage map generated in the present study represents one of the most dense linkage map developed for the crop till date. It will serve as a valuable resource for fine mapping and positional cloning of important quantitative trait loci (QTLs) associated with agronomical traits and also for anchoring and ordering of future genome sequence assemblies.

Features
This publication contains information about 8,210 features:
Feature NameUniquenameType
CaGBS151CaGBS151genetic_marker
CaGBS152CaGBS152genetic_marker
CaGBS153CaGBS153genetic_marker
CaGBS154CaGBS154genetic_marker
CaGBS155CaGBS155genetic_marker
CaGBS156CaGBS156genetic_marker
CaGBS157CaGBS157genetic_marker
CaGBS158CaGBS158genetic_marker
CaGBS159CaGBS159genetic_marker
CaGBS161CaGBS161genetic_marker
CaGBS162CaGBS162genetic_marker
CaGBS163CaGBS163genetic_marker
CaGBS164CaGBS164genetic_marker
CaGBS165CaGBS165genetic_marker
CaGBS166CaGBS166genetic_marker
CaGBS167CaGBS167genetic_marker
CaGBS168CaGBS168genetic_marker
CaGBS169CaGBS169genetic_marker
CaGBS170CaGBS170genetic_marker
CaGBS171CaGBS171genetic_marker
CaGBS172CaGBS172genetic_marker
CaGBS173CaGBS173genetic_marker
CaGBS174CaGBS174genetic_marker
CaGBS175CaGBS175genetic_marker
CaGBS176CaGBS176genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Chickpea-ICC4958/PI489777-RIL-2020
Stocks
This publication contains information about 1 stocks:
Stock NameUniquenameType
ICC4958/PI489777-RIL-2020ICC4958/PI489777-RIL-2020population
Properties
Additional details for this publication include:
Property NameValue
Publication Date2020 Aug 27
Journal AbbreviationFunct. Integr. Genomics
DOI10.1007/s10142-020-00751-y
Elocation10.1007/s10142-020-00751-y
ISSN1438-7948
eISSN1438-7948
Publication ModelPrint-Electronic
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany