EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance

Publication Overview
TitleEST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance
AuthorsKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M
TypeJournal Article
Journal NameTheoretical and applied genetics
Volume127
Issue3
Year2014
Page(s)703-713
CitationKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theoretical and applied genetics. 2014; 127(3):703-713.

Abstract

KEY MESSAGE : Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic ‘orphan’ crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab� ×� ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2� years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.
Features
This publication contains information about 770 features:
Feature NameUniquenameType
SNP_20004874SNP_20004874genetic_marker
SNP_20004876SNP_20004876genetic_marker
SNP_20004886SNP_20004886genetic_marker
SNP_20004906SNP_20004906genetic_marker
SNP_20004912SNP_20004912genetic_marker
SNP_20004917SNP_20004917genetic_marker
SNP_20004938SNP_20004938genetic_marker
SNP_20004939SNP_20004939genetic_marker
SNP_20004962SNP_20004962genetic_marker
SNP_20004964SNP_20004964genetic_marker
SNP_20004971SNP_20004971genetic_marker
SNP_20004981SNP_20004981genetic_marker
SNP_20004986SNP_20004986genetic_marker
SNP_20004997SNP_20004997genetic_marker
SNP_20005003SNP_20005003genetic_marker
SNP_20005010SNP_20005010genetic_marker
SNP_20005020SNP_20005020genetic_marker
SNP_20005044SNP_20005044genetic_marker
SNP_20005045SNP_20005045genetic_marker
SNP_20005051SNP_20005051genetic_marker
SNP_20005053SNP_20005053genetic_marker
SNP_20005072SNP_20005072genetic_marker
SNP_20005115SNP_20005115genetic_marker
SNP_20005121SNP_20005121genetic_marker
SNP_20005163SNP_20005163genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Lentil-Boron_tolerance-Kaur-2014
Featuremaps
This publication contains information about 1 maps:
Map Name
lentil-CassabxILL2024-F6
Stocks
This publication contains information about 2 stocks:
Stock NameUniquenameType
CassabCassabaccession
ILL2024ILL2024accession
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2014
Published Location|||
Language Abbreng
Publication Model[electronic resource].
URLhttp://dx.doi.org/10.1007/s00122-013-2252-0
KeywordsArabidopsis thaliana, Glycine max, Lens culinaris, Lotus corniculatus var. japonicus, Medicago truncatula, boron, chromosome mapping, databases, expressed sequence tags, foods, genes, marker-assisted selection, microsatellite repeats, quantitative trait loci, single nucleotide polymorphism, soybeans, toxicity