EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance

Publication Overview
TitleEST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance
AuthorsKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M
TypeJournal Article
Journal NameTheoretical and applied genetics
Volume127
Issue3
Year2014
Page(s)703-713
CitationKaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theoretical and applied genetics. 2014; 127(3):703-713.

Abstract

KEY MESSAGE : Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic ‘orphan’ crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab� ×� ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2� years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.
Features
This publication contains information about 770 features:
Feature NameUniquenameType
SNP_20003098SNP_20003098genetic_marker
SNP_20003105SNP_20003105genetic_marker
SNP_20003106SNP_20003106genetic_marker
SNP_20003108SNP_20003108genetic_marker
SNP_20003112SNP_20003112genetic_marker
SNP_20003114SNP_20003114genetic_marker
SNP_20003116SNP_20003116genetic_marker
SNP_20003122SNP_20003122genetic_marker
SNP_20003123SNP_20003123genetic_marker
SNP_20003134SNP_20003134genetic_marker
SNP_20003137SNP_20003137genetic_marker
SNP_20003138SNP_20003138genetic_marker
SNP_20003139SNP_20003139genetic_marker
SNP_20003141SNP_20003141genetic_marker
SNP_20003158SNP_20003158genetic_marker
SNP_20003159SNP_20003159genetic_marker
SNP_20003160SNP_20003160genetic_marker
SNP_20003161SNP_20003161genetic_marker
SNP_20003162SNP_20003162genetic_marker
SNP_20003165SNP_20003165genetic_marker
SNP_20003172SNP_20003172genetic_marker
SNP_20003180SNP_20003180genetic_marker
SNP_20003181SNP_20003181genetic_marker
SNP_20003185SNP_20003185genetic_marker
SNP_20003193SNP_20003193genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Lentil-Boron_tolerance-Kaur-2014
Featuremaps
This publication contains information about 1 maps:
Map Name
lentil-CassabxILL2024-F6
Stocks
This publication contains information about 2 stocks:
Stock NameUniquenameType
CassabCassabaccession
ILL2024ILL2024accession
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2014
Published Location|||
Language Abbreng
Publication Model[electronic resource].
URLhttp://dx.doi.org/10.1007/s00122-013-2252-0
KeywordsArabidopsis thaliana, Glycine max, Lens culinaris, Lotus corniculatus var. japonicus, Medicago truncatula, boron, chromosome mapping, databases, expressed sequence tags, foods, genes, marker-assisted selection, microsatellite repeats, quantitative trait loci, single nucleotide polymorphism, soybeans, toxicity