Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)

Publication Overview
TitleGenetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)
AuthorsStephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Materne M, Kaur S
TypeJournal Article
Journal NameMolecular breeding
Volume33
Issue2
Year2014
Page(s)297-313
CitationStephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Materne M, Kaur S. Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Molecular breeding. 2014; 33(2):297-313.

Abstract

Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labr., is a highly destructive disease of chickpea (Cicer arietinum L.) on a global basis, and exhibits considerable natural variation for pathogenicity. Different sources of ascochyta blight resistance are available within the cultivated species, suitable for pyramiding to improve field performance. Robust and closely linked genetic markers are desirable to facilitate this approach. A total of 4,654 simple sequence repeat (SSR) and 1,430 single nucleotide polymorphism (SNP) markers were identified from a chickpea expressed sequence tag (EST) database. Subsets of 143 EST–SSRs and 768 SNPs were further used for validation and subsequent high-density genetic mapping of two intraspecific mapping populations (Lasseter × ICC3996 and S95362 × Howzat). Comparison of the linkage maps to the genome of Medicago truncatula revealed a high degree of conserved macrosynteny. Based on field evaluation of ascochyta blight incidence performed over 2 years, two genomic regions containing resistance determinants were identified in the Lasseter × ICC3996 family. In the S95362 × Howzat population, only one quantitative trait locus (QTL) region was identified for both phenotypic evaluation trials, which on the basis of bridging markers was deduced to coincide with one of the Lasseter × ICC3996 QTLs. Of the two QTL-containing regions identified in this study, one (ab_QTL1) was predicted to be in common with QTLs identified in prior studies, while the other (ab_QTL2) may be novel. Markers in close linkage to ascochyta blight resistance genes that have been identified in this study can be further validated and effectively implemented in chickpea breeding programs.
Features
This publication contains information about 5,428 features:
Feature NameUniquenameType
SNP_40002085SNP_40002085genetic_marker
SNP_40002090SNP_40002090genetic_marker
SNP_40002091SNP_40002091genetic_marker
SNP_40002092SNP_40002092genetic_marker
SNP_40002093SNP_40002093genetic_marker
SNP_40002094SNP_40002094genetic_marker
SNP_40002096SNP_40002096genetic_marker
SNP_40002098SNP_40002098genetic_marker
SNP_40002099SNP_40002099genetic_marker
SNP_40002100SNP_40002100genetic_marker
SNP_40002101SNP_40002101genetic_marker
SNP_40002107SNP_40002107genetic_marker
SNP_40002108SNP_40002108genetic_marker
SNP_40002109SNP_40002109genetic_marker
SNP_40002112SNP_40002112genetic_marker
SNP_40002113SNP_40002113genetic_marker
SNP_40002114SNP_40002114genetic_marker
SNP_40002117SNP_40002117genetic_marker
SNP_40002124SNP_40002124genetic_marker
SNP_40002127SNP_40002127genetic_marker
SNP_40002128SNP_40002128genetic_marker
SNP_40002131SNP_40002131genetic_marker
SNP_40002133SNP_40002133genetic_marker
SNP_40002134SNP_40002134genetic_marker
SNP_40002135SNP_40002135genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Chickpea-A.blight_resistance-Stephens-2013
Featuremaps
This publication contains information about 2 maps:
Map Name
chickpea-LasseterxICC3996-F6-RIL
chickpea-S95362xHowzat-F6-RIL
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2014
Published Location|||
Language Abbreng
Publication Model[electronic resource].
URLhttp://dx.doi.org/10.1007/s11032-013-9950-9
KeywordsAscochyta rabiei, Cicer arietinum, Medicago truncatula, blight, breeding, chickpeas, chromosome mapping, expressed sequence tags, genes, genetic markers, microsatellite repeats, quantitative trait loci, single nucleotide polymorphism