Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers

Publication Overview
TitleExploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers
AuthorsVerma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S
TypeJournal Article
Journal NameMolecular biology reports
Year2014
CitationVerma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S. Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Molecular biology reports. 2014 Jun 4.

Abstract

Lentil (Lens culinaris Medik.) is an economically important grain legume, yet the genetic and genomic resources remain largely uncharacterized and unexploited in this crop. Microsatellites have become markers of choice for crop improvement applications. Hence, simple sequence repeat (SSR) markers were developed for lentil through the construction of genomic library enriched for GA/CT motifs. As a result 122 functional SSR primer pairs were developed from 151 microsatellite loci and validated in L. culinaris cv. Precoz. Thirty three SSR markers were utilized for the analysis of genetic relationships between cultivated and wild species of Lens and related legumes. A total of 123 alleles were amplified at 33 loci ranging from 2-5 alleles with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus. Varied levels of cross genera transferability were obtained ranging from 69.70 % across Pisum sativum to 12.12 % across Vigna radiata. The UPGMA based dendrogram was able to establish the uniqueness of each genotype and grouped them into two major clusters clearly resolving the genetic relationships within lentil and related species. The new set of SSR markers reported here were efficient and highly polymorphic and would add to the existing repertoire of lentil SSR markers to be utilized in molecular breeding. Moreover, the improved knowledge about intra- and inter-specific genetic relationships would facilitate germplasm utilization for lentil improvement.

Features
This publication contains information about 421 features:
Feature NameUniquenameType
JF768464JF768464.1region
JF768463JF768463.1region
JF768462JF768462.1region
JF768461JF768461.1region
JF768460JF768460.1region
JF768459JF768459.1region
JF768458JF768458.1region
JF768457JF768457.1region
JF768456JF768456.1region
JF768455JF768455.1region
JF768454JF768454.1region
JF768453JF768453.1region
JF768452JF768452.1region
JF768451JF768451.1region
JF768450JF768450.1region
JF768449JF768449.1region
JF768448JF768448.1region
JF768447JF768447.1region
JF768446JF768446.1region
JF768445JF768445.1region
JF768444JF768444.1region
JF768443JF768443.1region
JF768442JF768442.1region
JF768441JF768441.1region
JF768440JF768440.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
LanguageEnglish
Language AbbrENG
Publication ModelPrint-Electronic
ISSN1573-4978
eISSN1573-4978
Publication Date2014 Jun 4
Journal AbbreviationMol. Biol. Rep.