Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers

Publication Overview
TitleExploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers
AuthorsVerma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S
TypeJournal Article
Journal NameMolecular biology reports
Year2014
CitationVerma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S. Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Molecular biology reports. 2014 Jun 4.

Abstract

Lentil (Lens culinaris Medik.) is an economically important grain legume, yet the genetic and genomic resources remain largely uncharacterized and unexploited in this crop. Microsatellites have become markers of choice for crop improvement applications. Hence, simple sequence repeat (SSR) markers were developed for lentil through the construction of genomic library enriched for GA/CT motifs. As a result 122 functional SSR primer pairs were developed from 151 microsatellite loci and validated in L. culinaris cv. Precoz. Thirty three SSR markers were utilized for the analysis of genetic relationships between cultivated and wild species of Lens and related legumes. A total of 123 alleles were amplified at 33 loci ranging from 2-5 alleles with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus. Varied levels of cross genera transferability were obtained ranging from 69.70 % across Pisum sativum to 12.12 % across Vigna radiata. The UPGMA based dendrogram was able to establish the uniqueness of each genotype and grouped them into two major clusters clearly resolving the genetic relationships within lentil and related species. The new set of SSR markers reported here were efficient and highly polymorphic and would add to the existing repertoire of lentil SSR markers to be utilized in molecular breeding. Moreover, the improved knowledge about intra- and inter-specific genetic relationships would facilitate germplasm utilization for lentil improvement.

Features
This publication contains information about 421 features:
Feature NameUniquenameType
JF768589JF768589.1region
JF768588JF768588.1region
JF768587JF768587.1region
JF768586JF768586.1region
JF768585JF768585.1region
JF768584JF768584.1region
JF768583JF768583.1region
JF768582JF768582.1region
JF768581JF768581.1region
JF768580JF768580.1region
JF768579JF768579.1region
JF768578JF768578.1region
JF768577JF768577.1region
JF768576JF768576.1region
JF768575JF768575.1region
JF768574JF768574.1region
JF768573JF768573.1region
JF768572JF768572.1region
JF768571JF768571.1region
JF768570JF768570.1region
JF768569JF768569.1region
JF768568JF768568.1region
JF768567JF768567.1region
JF768566JF768566.1region
JF768565JF768565.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
LanguageEnglish
Language AbbrENG
Publication ModelPrint-Electronic
ISSN1573-4978
eISSN1573-4978
Publication Date2014 Jun 4
Journal AbbreviationMol. Biol. Rep.