Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers

Publication Overview
TitleExploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers
AuthorsVerma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S
TypeJournal Article
Journal NameMolecular biology reports
Year2014
CitationVerma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S. Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Molecular biology reports. 2014 Jun 4.

Abstract

Lentil (Lens culinaris Medik.) is an economically important grain legume, yet the genetic and genomic resources remain largely uncharacterized and unexploited in this crop. Microsatellites have become markers of choice for crop improvement applications. Hence, simple sequence repeat (SSR) markers were developed for lentil through the construction of genomic library enriched for GA/CT motifs. As a result 122 functional SSR primer pairs were developed from 151 microsatellite loci and validated in L. culinaris cv. Precoz. Thirty three SSR markers were utilized for the analysis of genetic relationships between cultivated and wild species of Lens and related legumes. A total of 123 alleles were amplified at 33 loci ranging from 2-5 alleles with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus. Varied levels of cross genera transferability were obtained ranging from 69.70 % across Pisum sativum to 12.12 % across Vigna radiata. The UPGMA based dendrogram was able to establish the uniqueness of each genotype and grouped them into two major clusters clearly resolving the genetic relationships within lentil and related species. The new set of SSR markers reported here were efficient and highly polymorphic and would add to the existing repertoire of lentil SSR markers to be utilized in molecular breeding. Moreover, the improved knowledge about intra- and inter-specific genetic relationships would facilitate germplasm utilization for lentil improvement.

Features
This publication contains information about 421 features:
Feature NameUniquenameType
JF768514JF768514.1region
JF768513JF768513.1region
JF768512JF768512.1region
JF768511JF768511.1region
JF768510JF768510.1region
JF768509JF768509.1region
JF768508JF768508.1region
JF768507JF768507.1region
JF768506JF768506.1region
JF768505JF768505.1region
JF768504JF768504.1region
JF768503JF768503.1region
JF768502JF768502.1region
JF768501JF768501.1region
JF768500JF768500.1region
JF768499JF768499.1region
JF768498JF768498.1region
JF768497JF768497.1region
JF768496JF768496.1region
JF768495JF768495.1region
JF768494JF768494.1region
JF768493JF768493.1region
JF768492JF768492.1region
JF768491JF768491.1region
JF768490JF768490.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
LanguageEnglish
Language AbbrENG
Publication ModelPrint-Electronic
ISSN1573-4978
eISSN1573-4978
Publication Date2014 Jun 4
Journal AbbreviationMol. Biol. Rep.