Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly

Publication Overview
TitleGenome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly
AuthorsDeokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar An B
TypeJournal Article
Journal NameBMC genomics
Volume15
Issue1
Year2014
Page(s)708
CitationDeokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar An B. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC genomics. 2014 Aug 23; 15(1):708.

Abstract

BACKGROUND
In the whole genome sequencing, genetic map provides an essential framework for accurate and efficient genome assembly and validation. The main objectives of this study were to develop a high-density genetic map using RAD-Seq (Restriction-site Associated DNA Sequencing) genotyping-by-sequencing (RAD-Seq GBS) and Illumina GoldenGate assays, and to examine the alignment of the current map with the kabuli chickpea genome assembly.

RESULTS
Genic single nucleotide polymorphisms (SNPs) totaling 51,632 SNPs were identified by 454 transcriptome sequencing of Cicer arietinum and Cicer reticulatum genotypes. Subsequently, an Illumina GoldenGate assay for 1,536 SNPs was developed. A total of 1,519 SNPs were successfully assayed across 92 recombinant inbred lines (RILs), of which 761 SNPs were polymorphic between the two parents. In addition, the next generation sequencing (NGS)-based GBS was applied to the same population generating 29,464 high quality SNPs. These SNPs were clustered into 626 recombination bins based on common segregation patterns. Data from the two approaches were used for the construction of a genetic map using a population derived from an intraspecific cross. The map consisted of 1,336 SNPs including 604 RAD recombination bins and 732 SNPs from Illumina GoldenGate assay. The map covered 653 cM of the chickpea genome with an average distance between adjacent markers of 0.5 cM. To date, this is the most extensive genetic map of chickpea using an intraspecific population. The alignment of the map with the CDC Frontier genome assembly revealed an overall conserved marker order; however, a few local inconsistencies within the Cicer arietinum pseudochromosome 1 (Ca1), Ca5 and Ca8 were detected. The map enabled the alignment of 215 unplaced scaffolds from the CDC Frontier draft genome assembly. The alignment also revealed varying degrees of recombination rates and hotspots across the chickpea genome.

CONCLUSIONS
A high-density genetic map using RAD-Seq GBS and Illumina GoldenGate assay was developed and aligned with the existing kabuli chickpea draft genome sequence. The analysis revealed an overall conserved marker order, although some localized inversions between draft genome assembly and the genetic map were detected. The current analysis provides an insight of the recombination rates and hotspots across the chickpea genome.

Features
This publication contains information about 585 features:
Feature NameUniquenameType
CaC15894CaC15894genetic_marker
CaC15926CaC15926genetic_marker
CaC15995CaC15995genetic_marker
CaC16043CaC16043genetic_marker
CaC16065CaC16065genetic_marker
CaC16078CaC16078genetic_marker
CaC16107CaC16107genetic_marker
CaC16118CaC16118genetic_marker
CaC16148CaC16148genetic_marker
CaC16197CaC16197genetic_marker
CaC16231CaC16231genetic_marker
CaC16246CaC16246genetic_marker
CaC16249CaC16249genetic_marker
CaC16281CaC16281genetic_marker
CaC16285CaC16285genetic_marker
CaC16325CaC16325genetic_marker
CaC16391CaC16391genetic_marker
CaC16508CaC16508genetic_marker
CaC1654CaC1654genetic_marker
CaC16549CaC16549genetic_marker
CaC16595CaC16595genetic_marker
CaC1662CaC1662genetic_marker
CaC16699CaC16699genetic_marker
CaC16711CaC16711genetic_marker
CaC16748CaC16748genetic_marker

Pages

Properties
Additional details for this publication include:
Property NameValue
Language AbbrENG
Publication ModelPrint-Electronic
ISSN1471-2164
eISSN1471-2164
Publication Date2014 Aug 23
Journal AbbreviationBMC Genomics
LanguageEnglish
Publication TypeJournal Article