<p>Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea</p>

Publication Overview
TitleTranscriptome sequencing for high throughput SNP development and genetic mapping in Pea
AuthorsDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G
TypeJournal Article
Journal NameBMC Genomics
Volume15
Year2014
Page(s)126
CitationDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics. 2014; 15:126.

Abstract

Background: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.
Features
This publication contains information about 2,066 features:
Feature NameUniquenameType
Ps000291Ps000291genetic_marker
Ps001544Ps001544genetic_marker
Ps000247Ps000247genetic_marker
Ps900208Ps900208genetic_marker
Ps900145Ps900145genetic_marker
Ps900037Ps900037genetic_marker
Ps900183Ps900183genetic_marker
Ps001666Ps001666genetic_marker
Ps001843Ps001843genetic_marker
Ps000649Ps000649genetic_marker
Ps000589Ps000589genetic_marker
Ps900379Ps900379genetic_marker
Ps000217Ps000217genetic_marker
Ps001558Ps001558genetic_marker
Ps000339Ps000339genetic_marker
Ps000058Ps000058genetic_marker
Ps000181Ps000181genetic_marker
Ps000143Ps000143genetic_marker
Ps000746Ps000746genetic_marker
Ps000038Ps000038genetic_marker
Ps900312Ps900312genetic_marker
Ps900179Ps900179genetic_marker
Ps000251Ps000251genetic_marker
Ps000673Ps000673genetic_marker
Ps000742Ps000742genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Pea-Composite_Map-RIL
Properties
Additional details for this publication include:
Property NameValue
URLhttp://www.biomedcentral.com/1471-2164/15/126