<p>Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea</p>

Publication Overview
TitleTranscriptome sequencing for high throughput SNP development and genetic mapping in Pea
AuthorsDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G
TypeJournal Article
Journal NameBMC Genomics
Volume15
Year2014
Page(s)126
CitationDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics. 2014; 15:126.

Abstract

Background: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.
Features
This publication contains information about 2,066 features:
Feature NameUniquenameType
Ps000538Ps000538genetic_marker
Ps001380Ps001380genetic_marker
Ps000403Ps000403genetic_marker
Ps000489Ps000489genetic_marker
Ps001158Ps001158genetic_marker
Ps000431Ps000431genetic_marker
Ps900282Ps900282genetic_marker
Ps000650Ps000650genetic_marker
Ps001803Ps001803genetic_marker
Ps001521Ps001521genetic_marker
Ps000523Ps000523genetic_marker
Ps000498Ps000498genetic_marker
Ps000663Ps000663genetic_marker
Ps000729Ps000729genetic_marker
Ps001634Ps001634genetic_marker
Ps000165Ps000165genetic_marker
Ps000706Ps000706genetic_marker
Ps000406Ps000406genetic_marker
Ps000463Ps000463genetic_marker
Ps000632Ps000632genetic_marker
Ps000424Ps000424genetic_marker
Ps000447Ps000447genetic_marker
Ps900352Ps900352genetic_marker
Ps000438Ps000438genetic_marker
Ps000554Ps000554genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Pea-Composite_Map-RIL
Properties
Additional details for this publication include:
Property NameValue
URLhttp://www.biomedcentral.com/1471-2164/15/126