<p>Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea</p>

Publication Overview
TitleTranscriptome sequencing for high throughput SNP development and genetic mapping in Pea
AuthorsDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G
TypeJournal Article
Journal NameBMC Genomics
Volume15
Year2014
Page(s)126
CitationDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics. 2014; 15:126.

Abstract

Background: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.
Features
This publication contains information about 2,066 features:
Feature NameUniquenameType
Ps000433Ps000433genetic_marker
Ps000739Ps000739genetic_marker
Ps000738Ps000738genetic_marker
Ps000831Ps000831genetic_marker
Ps900170Ps900170genetic_marker
Ps000604Ps000604genetic_marker
Ps000561Ps000561genetic_marker
Ps001768Ps001768genetic_marker
Ps000456Ps000456genetic_marker
Ps000752Ps000752genetic_marker
Ps000465Ps000465genetic_marker
Ps000506Ps000506genetic_marker
Ps000005Ps000005genetic_marker
Ps000208Ps000208genetic_marker
Ps000243Ps000243genetic_marker
Ps001690Ps001690genetic_marker
Ps001762Ps001762genetic_marker
Ps001809Ps001809genetic_marker
Ps001626Ps001626genetic_marker
Ps001877Ps001877genetic_marker
Ps001878Ps001878genetic_marker
Ps001617Ps001617genetic_marker
Ps000074Ps000074genetic_marker
Ps900040Ps900040genetic_marker
Ps900018Ps900018genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Pea-Composite_Map-RIL
Properties
Additional details for this publication include:
Property NameValue
URLhttp://www.biomedcentral.com/1471-2164/15/126