<p>Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea</p>

Publication Overview
TitleTranscriptome sequencing for high throughput SNP development and genetic mapping in Pea
AuthorsDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G
TypeJournal Article
Journal NameBMC Genomics
Volume15
Year2014
Page(s)126
CitationDuarte J, Riviere N, Barabger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Henaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics. 2014; 15:126.

Abstract

Background: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.
Features
This publication contains information about 2,066 features:
Feature NameUniquenameType
Ps001536Ps001536genetic_marker
Ps001296Ps001296genetic_marker
Ps001473Ps001473genetic_marker
Ps001290Ps001290genetic_marker
Ps001523Ps001523genetic_marker
Ps001273Ps001273genetic_marker
Ps001470Ps001470genetic_marker
Ps001180Ps001180genetic_marker
Ps001313Ps001313genetic_marker
Ps001307Ps001307genetic_marker
Ps001253Ps001253genetic_marker
Ps001411Ps001411genetic_marker
Ps001338Ps001338genetic_marker
Ps001261Ps001261genetic_marker
Ps001478Ps001478genetic_marker
Ps001396Ps001396genetic_marker
Ps001454Ps001454genetic_marker
Ps001428Ps001428genetic_marker
Ps001414Ps001414genetic_marker
Ps001400Ps001400genetic_marker
Ps001445Ps001445genetic_marker
Ps001306Ps001306genetic_marker
Ps001260Ps001260genetic_marker
Ps001256Ps001256genetic_marker
Ps001511Ps001511genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Pea-Composite_Map-RIL
Properties
Additional details for this publication include:
Property NameValue
URLhttp://www.biomedcentral.com/1471-2164/15/126