<div> Marker Assisted Selection (MAS) for chickpea<em> Fusarium&nbsp;</em><span style="font-size: 13.1199998855591px; line-height: 17.0559997558594px;"><em>oxysporum</em> wilt resistant genotypes using PCR based molecular&nbsp;</span><span style="font-si

Publication Overview
TitleMarker Assisted Selection (MAS) for chickpea Fusarium oxysporum wilt resistant genotypes using PCR based molecular markers
AuthorsAhmad Z, Mumtaz AS, Ghafoor A, Ali A, Nisar M
TypeJournal Article
Journal NameMol Biol Rep
Volume41
Year2014
Page(s)6755-6762
CitationAhmad Z, Mumtaz AS, Ghafoor A, Ali A, Nisar M. Marker Assisted Selection (MAS) for chickpea Fusarium oxysporum wilt resistant genotypes using PCR based molecular markers. Mol Biol Rep. 2014; 41:6755-6762.

Abstract

The exploration of genetically superior accessions is the key source of germplasm conservation and potential breeding material for the future. To meet the demand of better yielding chickpea cultivars in Pakistan the present study was organized to select more stable and resistant lines from indigenous as well as exotic chickpea germplasm obtained from Plant Genetic Resource Institute (PGRI), National Agricultural Research Centre, Islamabad, Pakistan. For the identification and evaluation of chickpea wilt resistant lines against Fusarium oxysporum f. sp. ciceris (Schlechtends), the germplasm was tested in the field for the selection of wilt resistant lines and the PCR based molecular markers were investigated to use Marker Assisted Selection (MAS) for selection of the desirable cultivars. In field trial, 70 % accessions were resistant to wilt disease, while the remaining 30 % have shown susceptibility to the disease. A total of 5 RAPD and 15 SSR markers were screened for molecular based characterization of wilt response. The data of molecular markers were scored by the presence (1) and absence (0) of allele and subjected to statistical analysis. The analysis was based on coefficient of molecular similarity using UPGMA and sorted the germplasm into two groups based on disease response. Among the total used RAPD/SSR primers, only TA194 SSR marker showed linkage to wilt resistant locus at 85 % probability. The linkage of a marker was reconfirmed by receiver operating characteristic curve. The use of the sorted wilt resistant genotypes through SSR marker TA194 can make available ample prospect in MAS breeding for yield improvement of the crop in Pakistan.
Features
This publication contains information about 5 features:
Feature NameUniquenameType
OPA4OPA4genetic_marker
OPA9OPA9genetic_marker
UBC181UBC181genetic_marker
UBC733bUBC733bgenetic_marker
OPG13OPG13genetic_marker
Properties
Additional details for this publication include:
Property NameValue
URLhttp://link.springer.com/article/10.1007/s11033-014-3561-3