Construction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.)

Publication Overview
TitleConstruction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.)
AuthorsSudheesh S, Rodda M, Kennedy P, Verma P, Leonforte A, Cogan NOI, Materne M, Forster JW, Kaur S
TypeJournal Article
Journal NameMolecular Breeding
Volume35
Year2015
Page(s)185
CitationSudheesh S, Rodda M, Kennedy P, Verma P, Leonforte A, Cogan NOI, Materne M, Forster JW, Kaur S. Construction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.). 2015; 35:185.

Abstract

Field pea (Pisum sativum L.) is a grain legume crop that is cultivated for either human or livestock consumption. Development of varieties adapted to damaging abiotic and biotic stresses is a major objective for field pea breeding. Bacterial blight is a serious disease caused by the pathogenic agents Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. pisi. A recombinant inbred line (RIL) genetic mapping population was generated by crossing the susceptible genotype Kaspa to the resistant genotype PBA Oura. Previously described sets of single-nucleotide polymorphism and simple sequence repeat markers were assigned to a genetic linkage map of the Kaspa × PBA Oura population, which contained 358 markers spanning 1070 cM with an average marker density of 1 locus per 3.0 cM. Combination with multiple previously published maps (including that of Kaspa × Parafield) subsequently generated an integrated structure with much higher marker density of 1 locus per 0.85 cM. The Kaspa × PBA Oura and Kaspa × Parafield RILs were screened at the seedling stage for resistance to both pathovars. Totals of four and two QTLs for resistance to infection by P. syringae pv. syringae were detected in the Kaspa × Parafield and Kaspa × PBA Oura populations, respectively. A single common genomic region associated with P. syringae pv. pisi resistance was identified in both mapping populations. To integrate information on bacterial blight resistance from various QTL mapping studies, the relevant regions were extrapolated on to the integrated map through use of common flanking markers. The resources generated in this study will support map enhancement, identification of marker-trait associations, genomics-assisted breeding, map-based gene isolation and comparative genetics.
Features
This publication contains information about 3,014 features:
Feature NameUniquenameType
SNP_100000452SNP_100000452genetic_marker
SNP_100000454SNP_100000454genetic_marker
PsC21046p124PsC21046p124genetic_marker
PsC9266p386PsC9266p386genetic_marker
SubtSubtgenetic_marker
PsC16051p645PsC16051p645genetic_marker
SNP_100000498SNP_100000498genetic_marker
PsC8865p668PsC8865p668genetic_marker
Ps000817Ps000817genetic_marker
AA258AA258genetic_marker
PsC13216p577PsC13216p577genetic_marker
PsC6867p203PsC6867p203genetic_marker
PsC13024p195PsC13024p195genetic_marker
PsC22576p132PsC22576p132genetic_marker
PsC11215p241PsC11215p241genetic_marker
SNP_100000242SNP_100000242genetic_marker
Ps001067Ps001067genetic_marker
SNP_100000715SNP_100000715genetic_marker
Ps001110Ps001110genetic_marker
PsC21343p133PsC21343p133genetic_marker
SNP_100000334SNP_100000334genetic_marker
SNP_100000843SNP_100000843genetic_marker
SNP_100000753SNP_100000753genetic_marker
SNP_100000889SNP_100000889genetic_marker
PsC16506p373PsC16506p373genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Pea-Bacterial_Blight_Resistance-Sudheesh-2015
Featuremaps
This publication contains information about 3 maps:
Map Name
Pea-Kaspa_x_PBA Oura-RIL
Pea-Integrated_Map-Sudheesh-2015
Pea-Composite_Map-Sudheesh-2015
Stocks
This publication contains information about 3 stocks:
Stock NameUniquenameType
KaspaKaspaaccession
PBA OuraPBA Ouraaccession
Kaspa_x_PBA OuraKaspa_x_PBA Ourapopulation
Properties
Additional details for this publication include:
Property NameValue
URLhttp://link.springer.com/article/10.1007/s11032-015-0376-4