Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly

Publication Overview
TitleGenome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly
AuthorsDeokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar An B
TypeJournal Article
Journal NameBMC genomics
Volume15
Issue1
Year2014
Page(s)708
CitationDeokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar An B. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC genomics. 2014 Aug 23; 15(1):708.

Abstract

BACKGROUND
In the whole genome sequencing, genetic map provides an essential framework for accurate and efficient genome assembly and validation. The main objectives of this study were to develop a high-density genetic map using RAD-Seq (Restriction-site Associated DNA Sequencing) genotyping-by-sequencing (RAD-Seq GBS) and Illumina GoldenGate assays, and to examine the alignment of the current map with the kabuli chickpea genome assembly.

RESULTS
Genic single nucleotide polymorphisms (SNPs) totaling 51,632 SNPs were identified by 454 transcriptome sequencing of Cicer arietinum and Cicer reticulatum genotypes. Subsequently, an Illumina GoldenGate assay for 1,536 SNPs was developed. A total of 1,519 SNPs were successfully assayed across 92 recombinant inbred lines (RILs), of which 761 SNPs were polymorphic between the two parents. In addition, the next generation sequencing (NGS)-based GBS was applied to the same population generating 29,464 high quality SNPs. These SNPs were clustered into 626 recombination bins based on common segregation patterns. Data from the two approaches were used for the construction of a genetic map using a population derived from an intraspecific cross. The map consisted of 1,336 SNPs including 604 RAD recombination bins and 732 SNPs from Illumina GoldenGate assay. The map covered 653 cM of the chickpea genome with an average distance between adjacent markers of 0.5 cM. To date, this is the most extensive genetic map of chickpea using an intraspecific population. The alignment of the map with the CDC Frontier genome assembly revealed an overall conserved marker order; however, a few local inconsistencies within the Cicer arietinum pseudochromosome 1 (Ca1), Ca5 and Ca8 were detected. The map enabled the alignment of 215 unplaced scaffolds from the CDC Frontier draft genome assembly. The alignment also revealed varying degrees of recombination rates and hotspots across the chickpea genome.

CONCLUSIONS
A high-density genetic map using RAD-Seq GBS and Illumina GoldenGate assay was developed and aligned with the existing kabuli chickpea draft genome sequence. The analysis revealed an overall conserved marker order, although some localized inversions between draft genome assembly and the genetic map were detected. The current analysis provides an insight of the recombination rates and hotspots across the chickpea genome.

Features
This publication contains information about 585 features:
Feature NameUniquenameType
CaC14333CaC14333genetic_marker
CaC14359CaC14359genetic_marker
CaC14372CaC14372genetic_marker
CaC14401CaC14401genetic_marker
CaC14405CaC14405genetic_marker
CaC14495CaC14495genetic_marker
CaC14536CaC14536genetic_marker
CaC14565CaC14565genetic_marker
CaC14575CaC14575genetic_marker
CaC14579CaC14579genetic_marker
CaC14614CaC14614genetic_marker
CaC14675CaC14675genetic_marker
CaC14677CaC14677genetic_marker
CaC14706CaC14706genetic_marker
CaC14720CaC14720genetic_marker
CaC14721CaC14721genetic_marker
CaC14805CaC14805genetic_marker
CaC14807CaC14807genetic_marker
CaC14905CaC14905genetic_marker
CaC14911CaC14911genetic_marker
CaC14933CaC14933genetic_marker
CaC15006CaC15006genetic_marker
CaC15022CaC15022genetic_marker
CaC15034CaC15034genetic_marker
CaC15048CaC15048genetic_marker

Pages

Properties
Additional details for this publication include:
Property NameValue
Language AbbrENG
Publication ModelPrint-Electronic
ISSN1471-2164
eISSN1471-2164
Publication Date2014 Aug 23
Journal AbbreviationBMC Genomics
LanguageEnglish
Publication TypeJournal Article