Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L

Publication Overview
TitleConstruction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L
AuthorsLichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB
TypeComparative Study
Media TitleTAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Volume110
Issue3
Year2005
Page(s)492-510
CitationLichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2005 Feb; 110(3):492-510.

Abstract

Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb, and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb. The combined libraries collectively cover ca. 7.0 x genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, (GA)10, (GAA)7, (AT)10, (TAA)7, (TGA)7, (CA)10, (CAA)7, and (CCA)7. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA)n and (GA)n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at http://hbz.tamu.edu).

Features
This publication contains information about 233 features:
Feature NameUniquenameType
H4A03H4A03genetic_marker
H4A04H4A04genetic_marker
H4A07H4A07genetic_marker
H4A09H4A09genetic_marker
H4B041H4B041genetic_marker
H4B042H4B042genetic_marker
H4B06H4B06genetic_marker
H4B09H4B09genetic_marker
H4C04H4C04genetic_marker
H4D011H4D011genetic_marker
H4D012H4D012genetic_marker
H4D02H4D02genetic_marker
H4D07H4D07genetic_marker
H4D08H4D08genetic_marker
H4D11H4D11genetic_marker
H4D12H4D12genetic_marker
H4E04H4E04genetic_marker
H4E09H4E09genetic_marker
H4F01H4F01genetic_marker
H4F02H4F02genetic_marker
H4F03H4F03genetic_marker
H4F07H4F07genetic_marker
H4F09H4F09genetic_marker
H4G01H4G01genetic_marker
H4G02H4G02genetic_marker

Pages

Properties
Additional details for this publication include:
Property NameValue
Publication TypeComparative Study
Journal CountryGermany
Publication ModelPrint-Electronic
ISSN0040-5752
pISSN0040-5752
Publication Date2005 Feb
Journal AbbreviationTheor. Appl. Genet.
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Publication TypeResearch Support, Non-U.S. Gov't